Contents

Copyleft... 3

What is Talend Studio?... 5

Projects and Business Models... 6
 Working with projects.. 6
 Working with business models.. 13

Data Integration... 25
 Designing Jobs.. 25
 Managing Jobs... 96
 Mapping data flows... 132

Big Data... 189
 Talend Big Data solutions... 189
 Handling Big Data Jobs... 190
 Mapping Big Data flows... 197

Managing metadata in the Studio.. 207
 Centralizing metadata for Data Integration... 207
 Centralizing metadata for Big Data... 361

Using routines.. 430
 Managing routines.. 430
 System routines.. 438

Appendices... 454
 Customizing Talend Studio and setting Studio preferences..................................... 454
 Using SQL templates.. 502
 SQL template writing rules.. 512
What is Talend Studio?

Talend provides you with a range of open source and subscription Studios you can use to create your projects and manage data of any type or volume.

Using the graphical User Interface and hundreds of pre-built components and connectors, you can design your Jobs with a drag-and-drop interface and native code generation.
Projects and Business Models

Working with projects

Creating a project

A project is the highest physical structure for storing all different types of items. Once you launch your Talend Studio and before you start a Business Model, a data integration Job, a Route, or any other tasks, you need first create or import a project.

Creating a project at initial Studio launch

Procedure

1. Launch Talend Studio and connect to a local repository.
2. On the login window, select the Create a new project option and enter a project name in the field.

![Create a new project dialog box]

Note: Bear in mind:
- A project name is case insensitive
- A project name must start with an English letter and can contain only letters, numbers, the hyphen (-), and the underscore (_)
- The hyphen (-) character is deemed as the underscore (_)

3. Click Finish to create the project and open it in the Studio.

Creating a new project after initial Studio launch

About this task

To create a new local project after the initial startup of the Studio, do the following:

Procedure

1. On the login window, select the Create a new project option and enter a project name in the field.
2. Click **Create** to create the project. The newly created project is displayed on the list of existing projects.

3. Select the project on the list and click **Finish** to open the project in the Studio.
 Later, if you want to switch between projects, on the Studio menu bar, use the combination **File > Switch Project or Workspace**.

Importing a demo project

Talend provides you with different demo projects you can import into your Talend Studio. Available demos depend on the product you are using and may include ready to use Jobs which help you understand the functionalities of different Talend components.

You can import the demo project either from the login window of your studio as a separate project, or from the **Integration** perspective into your current project.
Importing a demo project as a separate project

Procedure

1. Launch your Talend Studio and from the login window select **Import a demo project** and then click **Select**.
2. In the open dialog box, select the demo project you want to import and click **Finish**.

 Note: The demo projects available in the dialog box may vary depending on the product you are using.

3. In the dialog box that opens, type in a name for the demo project you want to import and click **Finish**.

 A bar is displayed to show the progress of the operation.

4. On the login window, select from the project list the demo project you imported and then click **Finish** to open the demo project in the studio.

 All the samples of the demo project are imported into the studio under different folders in the repository tree view including the input files and metadata connection necessary to run the demo samples.

Importing a demo project into your current project

Procedure

1. Launch your studio and in the **Integration** perspective, click the icon on the toolbar.
2. In the open dialog box, select the demo project to import and click **Finish**.

 A bar is displayed to show the progress of the operation and then a confirmation message opens.

3. Click **OK**.

Importing projects

In Talend Studio, you can import one or more projects you already created with previous releases of the Studio.

About this task

Importing a single project

Procedure

1. From the Studio login window, select **Import an existing project** then click **Select** to open the **Import** wizard.
2. Enter a name for your new project in the **Project Name** field.

Warning: Make sure the project name you entered is unique, and bear in mind:
- A project name is case insensitive
- A project name must start with an English letter and can contain only letters, numbers, the hyphen (-), and the underscore (_)
- The hyphen (-) character is deemed as the underscore (_)

3. Click **Select root directory** or **Select archive file** depending on the source you want to import from.
4. Click **Browse...** to select the workspace directory/archive file of the specific project folder. By default, the workspace in selection is the current release’s one. Browse up to reach the previous release workspace directory or the archive file containing the projects to import.
5. Click **Finish** to validate the operation and return to the login window.

Results

Upon successful project import, the names of the imported projects are displayed on the **Project** list of the login window.
You can now select the imported project you want to open in Talend Studio and click **Finish** to launch the Studio.

Note: A generation initialization window might come up when launching the application. Wait until the initialization is complete.

Importing multiple projects

Procedure

1. From the Studio login window, select **Import an existing project** then click **Select** to open the **Import** wizard.
2. Click **Import several projects**.
3. Click **Select root directory** or **Select archive file** depending on the source you want to import from.
4. Click **Browse...** to select the workspace directory/archive file of the specific project folder.
 By default, the workspace in selection is the current release’s one. Browse up to reach the previous release workspace directory or the archive file containing the projects to import.
5. Select the **Copy projects into workspace** check box to make a copy of the imported project instead of moving it.

This option is available only when you import several projects from a root directory.

Note: If you want to remove the original project folders from the Talend Studio workspace directory you import from, clear this check box. But we strongly recommend you to keep it selected for backup purposes.

6. Select the **Hide projects that already exist in the workspace** check box to hide existing projects from the **Projects** list. This option is available only when you import several projects.

7. From the **Projects** list, select the projects to import and click **Finish** to validate the operation.

Results

Upon successful project import, the names of the imported projects are displayed on the **Project** list of the login window.
You can now select the imported project you want to open in Talend Studio and click **Finish** to launch the Studio.

Note: A generation initialization window might come up when launching the application. Wait until the initialization is complete.

Exporting a project

Talend Studio allows you to export projects created or imported in the current instance of Talend Studio.

Procedure

1. On the toolbar of the Studio main window, click to open the **Export Talend projects in archive file** dialog box.
2. Select the check boxes of the projects you want to export. You can select only parts of the project through the Filter Types... link, if need be (for advanced users).

3. In the To archive file field, type in the name of or browse to the archive file where you want to export the selected projects.

4. In the Option area, select the compression format and the structure type you prefer.

5. Click Finish to validate the changes.

Results

The archived file that holds the exported projects is created in the defined place.

Working with business models

What is a Business Model

Talend’s Business Models allow data integration project stakeholders to graphically represent their needs regardless of the technical implementation requirements. Business Models help the IT operation staff understand these expressed needs and translate them into technical processes. They typically include both the systems and processes already operating in the enterprise, as well as the ones that will be needed in the future.
Designing Business Models is part of the enterprises' best practices that organizations should adopt at a very early stage of a data integration project in order to ensure its success. Because Business Models usually help detect and resolve quickly project bottlenecks and weak points, they help limit the budget overspendings and/or reduce the upfront investment. Then during and after the project implementation, Business Models can be reviewed and corrected to reflect any required change.

A Business Model is a non technical view of a business workflow need.

Generally, a typical Business Model will include the strategic systems or processes already up and running in your company as well as new needs. You can symbolize these systems, processes and needs using multiple shapes and create the connections among them. Likely, all of them can be easily described using repository attributes and formatting tools.

In the design workspace of the Integration perspective of Talend Studio, you can use multiple tools in order to:

- draw your business needs,
- create and assign numerous repository items to your model objects,
- define the business model properties of your model objects.

Creating a Business Model

Procedure

1. In the Repository tree view of the Integration perspective, right-click the Business Models node and select Create Business Model.

 ![Create Business Model](image)

 The creation wizard guides you through the steps to create a new Business Model.

2. Enter the Business Model properties according to the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the new Business Model. A message comes up if you enter prohibited characters.</td>
</tr>
<tr>
<td>Purpose</td>
<td>Business Model purpose or any useful information regarding the Business Model use.</td>
</tr>
<tr>
<td>Description</td>
<td>Business Model description.</td>
</tr>
<tr>
<td>Author</td>
<td>Read-only field that shows by default the current user login.</td>
</tr>
</tbody>
</table>
Projects and Business Models

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locker</td>
<td>Read-only field that shows by default the login of the user who owns the lock on the current Business Model. This field is empty when you are creating a Business Model and has data only when you are editing the properties of an existing Business Model.</td>
</tr>
<tr>
<td>Version</td>
<td>Read-only field. You can manually increment the version using the M and m buttons.</td>
</tr>
<tr>
<td>Status</td>
<td>List to select from the status of the Business Model you are creating.</td>
</tr>
<tr>
<td>Path</td>
<td>List to select from the folder in which the Business Model will be created.</td>
</tr>
</tbody>
</table>

3. The **Modeler** opens up on the empty design workspace.
You can create as many models as you want and open them all.

The Modeler is made of the following panels:
* the **Integration** perspective's design workspace
* a **Palette** of shapes and lines specific to the business modeling
* the **Business Model** panel showing specific information about all or part of the model.

Modeling a Business Model

If you have multiple tabs opened on your design workspace, click the relevant tab in order to show the appropriate model information.

In the **Business Model** view, you can see information relative to the active model.

Use the **Palette** to drop the relevant shapes on the design workspace and connect them together with branches and arrange or improve the model visual aspect by zooming in or out.
This Palette offers graphical representations for objects interacting within a Business Model. The objects can be of different types, from strategic system to output document or decision step. Each one having a specific role in your Business Model according to the description, definition and assignment you give to it.

All objects are represented in the Palette as shapes, and can be included in the model. Note that you must click the business folder to display the library of shapes on the Palette.

Shapes

Select the shape corresponding to the relevant object you want to include in your Business Model. Double-click it or click the shape in the Palette and drop it in the modeling area.

Alternatively, for a quick access to the shape library, keep your cursor still on the modeling area for a couple of seconds to display the quick access toolbar:

![Quick Access Toolbar]

For instance, if your business process includes a decision step, select the diamond shape in the Palette to add this decision step to your model.

Note: When you move the pointer over the quick access toolbar, a tooltip helps you to identify the shapes.

Then a simple click will do to make it show on the modeling area.

The shape is placed in a dotted black frame. Pull the corner dots to resize it as necessary.
Also, a blue-edged input box allows you to add a label to the shape. Give an expressive name in order to be able to identify at a glance the role of this shape in the model.

Two arrows below the added shape allow you to create connections with other shapes. You can hence quickly define sequence order or dependencies between shapes.

Related topic: Connecting shapes on page 17.

The available shapes include:

<table>
<thead>
<tr>
<th>Callout</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision</td>
<td>The diamond shape generally represents an if condition in the model. Allows to take context-sensitive actions.</td>
</tr>
<tr>
<td>Action</td>
<td>The square shape can be used to symbolize actions of any nature, such as transformation, translation or formatting.</td>
</tr>
<tr>
<td>Terminal</td>
<td>The rounded corner square can illustrate any type of output terminal.</td>
</tr>
<tr>
<td>Data</td>
<td>A parallelogram shape symbolizes data of any type.</td>
</tr>
<tr>
<td>Document</td>
<td>Inserts a Document object which can be any type of document and can be used as input or output for the data processed.</td>
</tr>
<tr>
<td>Input</td>
<td>Inserts an input object allowing the user to type in or manually provide data to be processed.</td>
</tr>
<tr>
<td>List</td>
<td>Forms a list with the extracted data. The list can be defined to hold a certain nature of data.</td>
</tr>
<tr>
<td>Database</td>
<td>Inserts a database object which can hold the input or output data to be processed.</td>
</tr>
<tr>
<td>Actor</td>
<td>This schematic character symbolizes players in the decision-support as well technical processes.</td>
</tr>
<tr>
<td>Ellipse</td>
<td>Inserts an ellipse shape.</td>
</tr>
<tr>
<td>Gear</td>
<td>This gearing piece can be used to illustrate pieces of code programmed manually that should be replaced by a Talend Job for example.</td>
</tr>
</tbody>
</table>

Connecting shapes

About this task

When designing your Business Model, you want to implement relations between a source shape and a target shape.

There are two possible ways to connect shapes in your design workspace:

- Relationship
- Directional Relationship
- Bidirectional Relationship
Either select the relevant Relationship tool in the Palette. Then, in the design workspace, pull a link from one shape to the other to draw a connection between them.

Or, you can implement both the relationship and the element to be related to or from, in a few clicks.

Procedure

1. Simply move the mouse pointer over a shape that you already dropped on your design workspace, in order to display the double connection arrows.
2. Select the relevant arrow to implement the correct directional connection if need be.
3. Drag a link towards an empty area of the design workspace and release to display the connections popup menu.
4. Select the appropriate connection from the list. You can choose among Create Relationship To, Create Directional Relationship To or Create Bidirectional Relationship To.
5. Then, select the appropriate element to connect to, among the items listed.

Results

You can create a connection to an existing element of the model. Select Existing Element in the popup menu and choose the existing element you want to connect to in the displaying list box.
The connection is automatically created with the selected shape.

The nature of this connection can be defined using Repository elements, and can be formatted and labelled in the Properties panel, see Business Models on page 21.

When creating a connection, an input box allows you to add a label to the connection you have created. Choose a meaningful name to help you identify the type of relationship you created.

Note: You can also add notes and comments to your model to help you identify elements or connections at a later date.

Related topic: Commenting and arrange a model on page 19.

Commenting and arrange a model

The tools of the Palette allow you to customize your model:

<table>
<thead>
<tr>
<th>Callout</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>Select and move the shapes and lines around in the design workspace’s modeling area.</td>
</tr>
<tr>
<td>Zoom</td>
<td>Zoom in to a part of the model. To watch more accurately part of the model. To zoom out, press Shift and click the modeling area.</td>
</tr>
<tr>
<td>Note/Text/Note attachment</td>
<td>Allows comments and notes to be added in order to store any useful information regarding the model or part of it.</td>
</tr>
</tbody>
</table>

Adding a note or free text

To add a note, select the Note icon in the Palette, docked to the right of the design workspace.
Alternatively right-click the model or the shape you want to link the note to, and select Add Note. Or select the Note tool in the quick access toolbar.

A sticky note displays on the modeling area. If the note is linked to a particular shape, a line is automatically drawn to the shape.

Type in the text in the input box or, if the latter does not show, type in directly on the sticky note.

If you want to link your notes and specific shapes of your model, click the down arrow next to the Note tool on the Palette and select Note attachment. Pull the black arrow towards an empty area of the design workspace, and release. The popup menu offers you to attach a new Note to the selected shape.

You can also select the Add Text feature to type in free text directly in the modeling area. You can access this feature in the Note drop-down menu of the Palette or via a shortcut located next to the Add Note feature on the quick access toolbar.

Arranging the model view

You can also rearrange the look and feel of your model via the right-click menu.
Place your cursor in the design area, right-click to display the menu and select **Arrange all**. The shapes automatically move around to give the best possible reading of the model.

Alternatively, you can select manually the whole model or part of it.

To do so, right-click any part of the modeling area, and click **Select**.

You can select:
- **All** shapes and connectors of the model,
- **All shapes** used in the design workspace,
- **All connectors** branching together the shapes.

From this menu you can also zoom in and out to part of the model and change the view of the model.

Business Models

The information in the **Business Models** view corresponds to the current selection, if any. This can be the whole model if you selected all shapes of it or more specifically one of the shapes it is made of. If nothing is selected, the **Business Models** tab gives general information about the model.

The **Business Models** view contains different types of information grouped in the **Main**, **Appearance**, **Rules & Grid**, and **Assignment** tabs.

The **Main** tab displays basic information about the selected item in the design workspace. For more information about the **Main** tab, see *Displaying Job configuration tabs/views* on page 477.

Appearance tab

From the **Appearance** tab you can apply filling or border colors, change the appearance of shapes and lines in order to customize your Business Model or make it easier to read.

The **Business Model** view includes the following formats:
- fill the shape with selected color.
- color the shape border
- insert text above the shape
- insert gradient colors to the shape
- insert shadow to the shape

You can also move and manage shapes of your model using the edition tools. Right-click the relevant shape to access these editing tools.

Rulers and Grid tab

Procedure

1. To display the **Rulers & Grid** tab, click 🔄 on the **Palette**, then click any empty area of the design workspace to deselect any current selection.
2. Click the **Rulers & Grid** tab to access the ruler and grid setting view.
3. In the **Display** area, select the **Show Ruler** check box to show the **Ruler**, the **Show Grid** check box to show the **Grid**, or both check boxes. **Grid in front** sends the grid to the front of the model.
4. In the **Measurement** area, select the ruling unit among **Centimeters**, **Inches** or **Pixels**.
5. In the **Grid Line** area, click the **Color** button to set the color of the grid lines and select their style from the **Style** list.

6. Select the **Snap To Grid** check box to bring the shapes into line with the grid or the **Snap To Shapes** check box to bring the shapes into line with the shapes already dropped in the Business Model.

You can also click the **Restore Defaults** button to restore the default settings.

Assignment tab

The **Assignment** tab displays in a tabular form details of the **Repository** attributes you allocated to a shape or a connection.

To display any assignment information in the table, select a shape or a connection in the active model, then click the **Assignment** tab in the **Business Model** view.
You can also display the assignment list placing the mouse over the shape you assigned information to.

You can modify some information or attach a comment. Also, if you update data from the Repository tree view, assignment information gets automatically updated.

For further information about how to assign elements to a Business Model, see Assigning repository elements to a Business Model on page 23.

Assigning repository elements to a Business Model

The Assignment tab in the Business Models view lists the elements from the Repository tree view which have been assigned to a shape in the Business Model.
You can define or describe a particular object in your Business Model by simply associating it with various types of information, for example by adding metadata items.

You can set the nature of the metadata to be assigned or processed, thus facilitating the Job design phase.

To assign a metadata item, simply drop it from the Repository tree view to the relevant shape in the design workspace.

The Assignment table, located underneath the design workspace, gets automatically updated accordingly with the assigned information of the selected object.

The types of items that you can assign are:

<table>
<thead>
<tr>
<th>Element</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job designs</td>
<td>If any Job Designs developed for other projects in the same repository are available, you can reuse them as metadata in the active Business Model.</td>
</tr>
<tr>
<td>Metadata</td>
<td>You can assign any descriptive data stored in the repository to any of the objects used in the model. It can be connection information to a database for example.</td>
</tr>
<tr>
<td>Business Models</td>
<td>You can use in the active model all other Business Models stored in the repository of the same project.</td>
</tr>
<tr>
<td>Documentation</td>
<td>You can assign any type of documentation in any format. It can be a technical documentation, some guidelines in text format or a simple description of your databases.</td>
</tr>
<tr>
<td>Routines (Code)</td>
<td>If you have developed some routines in a previous project, to automate tasks for example, you can assign them to your Business Model. Routines are stored in the Code folder of the Repository tree view.</td>
</tr>
</tbody>
</table>

For more information about the Repository elements, see What is a Job design? on page 25.
Data Integration

Designing Jobs

What is a Job design?

A Job Design is the runnable layer of a business model. It is a graphical design, of one or more components connected together, that allows you to set up and run dataflow management processes. A Job Design translates business needs into code, routines and programs, in other words it technically implements your data flow.

The Jobs you design can address all of the different sources and targets that you need for data integration processes and any other related process.

When you design a Job in Talend Studio, you can:

• put in place data integration actions using a library of technical components.
• change the default setting of components or create new components or family of components to match your exact needs.
• set connections and relationships between components in order to define the sequence and the nature of actions.
• access code at any time to edit or document the components in the designed Job.
• create and add items to the repository for reuse and sharing purposes (in other projects or Jobs or with other users).

Warning:

In order to be able to execute the Jobs you design in Talend Studio, you need to install an Oracle JVM 1.8 or OpenJDK 1.8 (IBM JVM is not supported). You can download Oracle JVM from http://www.oracle.com/technetwork/java/javase/downloads/index.html. For more information about OpenJDK, see http://openjdk.java.net/.

Getting started with a basic Job

This section provides a continuous example that will help you create, add components to, configure, and execute a simple Job. This Job will be named A_Basic_Job and will read a text file, display its content on the Run console, and then write the data into another text file.

Creating a Job

About this task

Talend Studio enables you to create a Job by dropping different technical components from the Palette onto the design workspace and then connecting these components together.

To create the example Job described in this section, proceed as follows:

Procedure

1. In the Repository tree view of the Integration perspective, right-click the Job Designs node and select Create job from the contextual menu.
The **New Job** wizard opens to help you define the main properties of the new Job.

2. Fill the Job properties as shown in the previous screenshot.
 The fields correspond to the following properties:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the new Job.</td>
</tr>
<tr>
<td></td>
<td>Note that a message comes up if you enter prohibited characters.</td>
</tr>
<tr>
<td>Purpose</td>
<td>Job purpose or any useful information regarding the Job use.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Description</td>
<td>Job description containing any information that helps you describe what the Job does and how it does it.</td>
</tr>
<tr>
<td>Author</td>
<td>a read-only field that shows by default the current user login.</td>
</tr>
<tr>
<td>Locker</td>
<td>a read-only field that shows by default the login of the user who owns the lock on the current Job. This field is empty when you are creating a Job and has data only when you are editing the properties of an existing Job.</td>
</tr>
<tr>
<td>Version</td>
<td>a read-only field. You can manually increment the version using the M and m buttons. For more information, see Managing Job versions on page 112.</td>
</tr>
<tr>
<td>Status</td>
<td>a list to select from the status of the Job you are creating.</td>
</tr>
<tr>
<td>Path</td>
<td>a list to select from the folder in which the Job will be created.</td>
</tr>
</tbody>
</table>

3. An empty design workspace opens up showing the name of the Job as a tab label.

Results

The Job you created is now listed under the **Job Designs** node in the **Repository** tree view.

You can open one or more of the created Jobs by simply double-clicking the Job label in the **Repository** tree view.

Adding components to the Job

Now that the Job is created, components have to be added to the design workspace, a **tFileInputDelimited**, a **tLogRow**, and a **tFileOutputDelimited** in this example.

There are several ways to add a component onto the design workspace. You can:

- find your component on the **Palette** by typing the search keyword(s) in the search field of the **Palette** and drop it onto the design workspace.
- add a component by directly typing your search keyword(s) on the design workspace.
• add an output component by dragging from an input component already existing on the design workspace.
• drag and drop a centralized metadata item from the Metadata node onto the design workspace, and then select the component of interest from the Components dialog box.

This section describes the first three methods. For details about how to drop a component from the Metadata node, see Centralizing database metadata on page 207 and Managing NoSQL metadata on page 361.

Dropping the first component from the Palette

About this task

The first component of this example will be added from the Palette. This component defines the first task executed by the Job. In this example, as you first want to read a text file, you will use the tFileInputDelimited component.

To drop a component from the Palette, proceed as follows:

Procedure

1. Enter the search keyword(s) in the search field of the Palette and press Enter to validate your search.

 The keyword(s) can be the partial or full name of the component, or a phrase describing its functionality if you don’t know its name, for example, tfileinputde, fileinput, or read file row by row. The Palette filters to the only families where the component can be found. If you cannot find the Palette view in the Studio, see Changing the Palette layout and settings on page 473.

 Note:

 To use a descriptive phrase as keywords for a fuzzy search, make sure the Also search from Help when performing a component searching check box is selected on the Preferences > Palette Settings view. For more information, see Palette preferences (Talend> Palette Settings) on page 493.

2. Select the component you want to use and click on the design workspace where you want to drop the component.

Results

Note that you can also drop a note to your Job the same way you drop components.
Each newly-added component is shown in a blue box to show that it as an individual subjob.

Adding the second component by typing on the design workspace

About this task

The second component of our Job will be added by typing its name directly on the workspace, instead of dropping it from the Palette or from the Metadata node.

Prerequisite: Make sure you have selected the Enable Component Creation Assistant check box in the Studio preferences. For more information, see Using centralized metadata in a Job on page 359.

To add a component directly on the workspace, proceed as follows:

Procedure

1. Click where you want to add the component on the design workspace, and type your keywords, which can be the full or partial name of the component, or a phrase describing its functionality if you don’t know its name. In our example, start typing t.log.

 Note:

 To use a descriptive phrase as keywords for a fuzzy search, make sure the Also search from Help when performing a component searching check box is selected on the Preferences > Palette Settings view. For more information, see Palette preferences (Talend> Palette Settings) on page 493.

A list box appears below the text field displaying all the matching components in alphabetical order.
2. Double-click the desired component to add it on the workspace, \texttt{tLogRow} in our example.

\textbf{Adding an output component by dragging from an input one}

\textbf{About this task}

Now you will add the third component, a \texttt{tFileOutputDelimited}, to write the data read from the source file into another text file. We will add the component by dragging from the \texttt{tLogRow} component, which serves as an input component to the new one to be added.

\textbf{Procedure}

1. Click the \texttt{tLogRow} component to show the \texttt{o} icon docked to it.
2. Drag and drop the \texttt{o} icon where you want to add a new component.

 A text field and a component list appear. The component list shows all the components that can be connected with the input component.

3. To narrow the search, type in the text field the name of the component you want to add or part of it, or a phrase describing the component’s functionality if you don’t know its name, and then double-click the component of interest, \texttt{tFileOutputDelimited} in this example, on the component list to add it onto the design workspace. The new component is automatically connected with the input component \texttt{tLogRow}, using a \texttt{RowMain} connection.
Note:
To use a descriptive phrase as keywords for a fuzzy search, make sure the Also search from Help when performing a component searching check box is selected on the Preferences > Palette Settings view. For more information, see Palette preferences (Talend> Palette Settings) on page 493.

Connecting the components together

Now that the components have been added on the workspace, they have to be connected together. Components connected together form a subJob. Jobs are composed of one or several subJobs carrying out various processes.

In this example, as the tLogRow and tFileOutputDelimited components are already connected, you only need to connect the tFileInputDelimited to the tLogRow component.

To connect the components together, use either of the following methods:

You can also drop components in the middle of a Row link. For more information, see Adding a component between two connected components on page 36.

For more information on using various types of connections, see Using connections in a Job on page 60.

Right-click and click again

Procedure

1. Right-click the source component, tFileInputDelimited in this example.
2. In the contextual menu that opens, select the type of connection you want to use to link the components, RowMain in this example.
3. Click the target component to create the link, tLogRow in this example.
Note that a black crossed circle is displayed if the target component is not compatible with the link.

According to the nature and the role of the components you want to link together, several types of link are available. Only the authorized connections are listed in the contextual menu.

Drag and drop

Procedure

1. Click the input component, `tFileInputDelimited` in this example.
2. When the O icon appears, click it and drag the cursor to the destination component, `tLogRow` in this example.

 A **Row > Main** connection is automatically created between the two components.

While this method requires less operation steps, it works only with these types of **Row** connections: **Main**, **Lookup**, **Output**, **Filter**, and **Reject**, depending on the nature and role of the components you are connecting.
Configuring the components

Now that the components are linked, their properties should be defined.

For more advanced details regarding the components properties, see Defining component properties on page 39.

Configuring the tFileInputDelimited component

Procedure

1. Double-click the tFileInputDelimited component to open its Basic settings view.

2. Click the [...] button next to the File Name/Stream field.

3. Browse your system or enter the path to the input file, customers.txt in this example.

4. In the Header field, enter 1.

5. Click the [...] button next to Edit schema.

6. In the Schema Editor that opens, click three times the [+] button to add three columns.

7. Name the three columns id, CustomerName and CustomerAddress respectively and click OK to close the editor.

8. In the pop-up that opens, click OK accept the propagation of the changes.

This allows you to copy the schema you created to the next component, tLogRow in this example.
Configuring the tLogRow component

Procedure

1. Double-click the **tLogRow** component to open its **Basic settings** view.
2. In the **Mode** area, select **Table (print values in cells of a table)**.
 By doing so, the contents of the **customers.txt** file will be printed in a table and therefore more readable.

Configuring the tFileOutputDelimited component

Procedure

1. Double-click the **tFileOutputDelimited** component to open its **Basic settings** view.
2. Click the [...] button next to the **File Name** field.
3. Browse your system or enter the path to the output file, **customers.csv** in this example.
4. Select the **Include Header** check box.
5. If needed, click the **Sync columns** button to retrieve the schema from the input component.
Executing the Job

About this task
Now that components are configured, the Job can be executed.
To do so, proceed as follows:

Procedure
1. Press **Ctrl+S** to save the Job.
2. Go to **Run** tab, and click on **Run** to execute the Job.

Results
The file is read row by row and the extracted fields are displayed on the **Run** console and written to the specified output file.

Working with components
The sections below give detailed information about various subjects related to handling components in Jobs, including:

- Adding a component between two connected components on page 36
- Defining component properties on page 39
- Finding Jobs containing a specific component on page 49
- Setting default values in the schema of a component in a Job on page 50
Adding a component between two connected components

When designing a Job, you can insert a component between two components linked by a Row connection, provided that the new component can serve as a middle component between the two.

The examples below show different options for you to insert a tMap between a tFileInputDelimited and LogRow linked by a Row > Main connection. For how to connect components in a Job, see Connecting the components together on page 31. For more information about various types of connections, see Connection types on page 60.

Dropping the component from the Palette onto the connection

Procedure

1. From the Palette, locate and select tMap.
2. Drag the component and drop it onto the Row connection.

If you are prompted to give a name to the output connection from the newly added component, which is true in the case of a tMap, type in a name and click OK to close the dialog box.

Note:
You may be asked to retrieve the schema of the target component. In that case, click OK to accept or click No to deny.

The component is inserted in the middle of the connection, which is now divided into two connections.
Adding the component by typing on the connection

Procedure

1. Click on the connection that links the two existing components to select it.

2. Type the name of the new component you want to add, tMap in this example, and double click the component on the suggested list to add it onto the connection.

3. If you are prompted to give a name to the output connection from the newly added component, which is true in the case of a tMap, type in a name and click OK to close the dialog box.

Note:
You may be asked to retrieve the schema of the target component. In that case, click OK to accept or click No to deny.
The component is inserted in the middle of the connection, which is now divided in two connections.

Adding the component to the design workspace and moving the existing connection

Procedure

1. Add the new component, **tMap** in this example, onto the design workspace by either dropping it from the **Palette** or clicking in the design workspace and typing the component name.

2. Select the connection and move your mouse pointer towards the end of the connection until the mouse pointer becomes a + symbol.

3. Drag the connection from the **tLogRow** component and drop it onto the **tMap** component.
4. Connect the tMap component to the tLogRow using a Row > Main connection.

Defining component properties

The properties information for each component in a Job allows to set the actual technical implementation of the active Job.

Each component is defined by basic and advanced properties shown respectively on the Basic Settings tab and the Advanced Settings tab of the Component view of the selected component in the design workspace. The Component view gathers also other collateral information related to the component in use, including View and Documentation tabs.

Basic Settings tab

About this task

The Basic Settings tab is part of the Component view, which is located on the lower part of the designing editor of the Integration perspective of Talend Studio.
Each component has specific basic settings according to its function requirements within the Job.

Note:
Some components require code to be input or functions to be set. Make sure you use Java code in properties.

For **File** and **Database** components in a Job, you can centralize properties in metadata files located in the **Metadata** directory of the **Repository** tree view. This means that on the **Basic Settings** tab you can set properties on the spot, using the **Built-In Property Type** or use the properties you stored in the **Metadata Manager** using the **Repository Property Type**. The latter option helps you save time.

Select **Repository** as **Property Type** and choose the metadata file holding the relevant information. Related topic: **Centralizing database metadata** on page 207.

Alternatively, you can drop the **Metadata** item from the **Repository** tree view directly to the component already dropped on the design workspace, for its properties to be filled in automatically.

If you selected the **Built-in** mode and set manually the properties of a component, you can also save those properties as metadata in the **Repository**. To do so:

Procedure

1. Click the floppy disk icon. The metadata creation wizard corresponding to the component opens.
2. Follow the steps in the wizard. For more information about the creation of metadata items, see **Centralizing database metadata** on page 207.
3. The metadata displays under the **Metadata** node of the **Repository**.

Results

For all components that handle a data flow (most components), you can define a **Talend** schema in order to describe and possibly select the data to be processed. Like the **Properties** data, this schema is either **Built-in** or stored remotely in the **Repository** in a metadata file that you created. A detailed description of the Schema setting is provided in the next sections.

Setting a built-in schema in a Job

A schema created as **Built-in** is meant for a single use in a Job, hence cannot be reused in another Job.
Procedure

1. Select **Built-in** in the **Property Type** list of the **Basic settings** view.
2. Click the **Edit Schema** button to create your built-in schema by adding columns and describing their content, according to the input file definition.

![Schema of tFileInputDelimited_1](image)

Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see [Java API Specification](#).

Below are the commonly used **Talend** data types:

- **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tFileInputRaw` component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

In all output properties, you also have to define the schema of the output. To retrieve the schema defined in the input schema, click the **Sync columns** tab in the **Basic settings** view.

Warning:

When creating a database table, you are recommended to specify the **Length** field for all columns of type `String`, `Integer` or `Long` and specify the **Precision** field for all columns of type `Double`, `Float` or `BigDecimal` in the schema of the component used. Otherwise, unexpected errors may occur.

Setting a repository schema in a Job

If you often use certain database connections or specific files when creating your Jobs, you can avoid defining the same properties over and over again by creating metadata files and storing them in the **Metadata** node in the **Repository** tree view of the **Integration** perspective.

Procedure

1. To recall a metadata file into your current Job:
 - Select **Repository** in the **Schema** list and then select the relevant metadata file.
• Or, drop the metadata item from the **Repository** tree view directly to the component already dropped on the design workspace.

2. Click **Edit Schema** to check that the data is appropriate.

You can edit a repository schema used in a Job from the **Basic settings** view. However, note that the schema hence becomes **Built-in** in the current Job.

You can also use a repository schema partially. For more information, see **Using a repository schema partially in a Job** on page 42.

Note:

You cannot change the schema stored in the repository from this window. To edit the schema stored remotely, right-click it under the **Metadata** node and select the corresponding edit option (**Edit connection** or **Edit file**) from the contextual menu.

Related topics: **Centralizing database metadata** on page 207.

Using a repository schema partially in a Job

When using a repository schema, if you do not want to use all the predefined columns, you can select particular columns without changing the schema into a built-in one.

The following describes how to use a repository schema partially for a database input component. The procedure may vary slightly according to the component you are using.
Procedure

1. Click the [...] button next to Edit schema on the Basic settings tab. The Edit parameter using repository dialog box appears. By default, the option View schema is selected.

2. Click OK. The Schema dialog box pops up, which displays all columns in the schema. The Used Column check box before each column name indicates whether the column is used.

3. Select the columns you want to use.

4. Click OK. A message box appears, which prompts you to do a guess query.

Note:
The guess query operation is needed only for the database metadata.
5. Click OK to close the message box. The **Propagate** dialog box appears. Click Yes to propagate the changes and close the dialog box.

6. On the **Basic settings** tab, click **Guess Query**. The selected column names are displayed in the **Query** area as expected.
Results

For more information about how to set a repository schema, see Setting a repository schema in a Job on page 41.

Setting a field dynamically (Ctrl+Space bar)

About this task

On any field of your component Properties view, you can use the Ctrl+Space bar to access the global and context variable list and set the relevant field value dynamically.

Procedure

1. Place the cursor on any field of the Component view.
2. Press Ctrl+Space bar to access the proposal list.
3. Select on the list the relevant parameters you need. Appended to the variable list, a information panel provides details about the selected parameter.

This can be any parameter including: error messages, number of lines processed, or else... The list varies according to the component in selection or the context you are working in.

Related topic: Using contexts and variables on page 66.

Advanced settings tab

Some components, especially File and Databases components in Jobs, provides numerous advanced use possibilities.
The content of the Advanced settings tab changes according to the selected component. Generally you will find on this tab the parameters that are not required for a basic or usual use of the component but may be required for a use out of the standard scope.

Measuring data flows

You can also find in the Advanced settings view the option tStatCatcher Statistics that allows you, if selected, to display logs and statistics about the current Job without using dedicated components. For more information regarding the stats & log features, see Automating the use of statistics & logs on page 94.

Dynamic settings tab of components in a Job

About this task

The Basic settings and Advanced settings tabs of all components display various check boxes and drop-down lists for component parameters. Usually, available values for these types of parameters can only be edited when designing your Job.

The Dynamic settings tab, on the Component view, allows you to customize these parameters into code or variable.

This feature allows you, for example, to define these parameters as variables and thus let them become context-dependent, whereas they are not meant to be by default.

Another benefit of this feature is that you can now change the context setting at execution time. This makes full sense when you intend to export your Job in order to deploy it onto a Job execution server for example.
To customize these types of parameters, as context variables for example, follow the following steps:

Procedure

1. Select the relevant component basic settings or advanced settings view that contains the parameter you want to define as a variable.
2. Click the **Dynamic settings** tab.
3. Click the **plus** button to display a new parameter line in the table.
4. Click the **Name** of the parameter displaying to show the list of available parameters. For example: `Print operations`
5. Then click in the facing **Code** column cell and set the code to be used. For example: `context.verbose` if you create the corresponding context variable, called `verbose`.

 Note: As code, you can input a context variable or a piece of Java code.

Results

The corresponding lists or check boxes thus become unavailable and are highlighted in yellow in the **Basic settings** or **Advanced settings** tab.

Note: If you want to set a parameter as context variable, make sure you create the corresponding variable in the **Contexts** view. For more information regarding the context variable definition, see Defining context variables in the Contexts view on page 67.
For use cases showing how to define a dynamic parameter, see Reading data from databases through context-based dynamic connections and Reading data from different MySQL databases using dynamically loaded connection parameters on Talend Help Center (https://help.talend.com).

View tab

The View tab of the Component view allows you to change the default display format of components on the design workspace.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label format</td>
<td>Free text label showing on the design workspace. Variables can be set to retrieve and display values from other fields. The field tooltip usually shows the corresponding variable where the field value is stored.</td>
</tr>
<tr>
<td>Hint format</td>
<td>Hidden tooltip, showing only when you mouse over the component.</td>
</tr>
<tr>
<td>Connection format</td>
<td>Indicates the type of connection accepted by the component.</td>
</tr>
</tbody>
</table>

You can graphically highlight both Label and Hint text with HTML formatting tags:
- **Bold**: ` YourLabelOrHint `
- **Italic**: `<i> YourLabelOrHint </i>`
- Return carriage: `
 ContdOnNextLine`
- **Color**: ` YourLabelOrHint `

To change your preferences of this View panel, click **Window > Preferences > Talend > Designer**.

Documentation tab

Feel free to add any useful comment or chunk of text or documentation to your component.
In the **Documentation** tab, you can add your text in the **Comment** field. Then, select the **Show Information** check box and an information icon display next to the corresponding component in the design workspace.

You can show the Documentation in your hint tooltip using the associated variable `_COMMENT_`, so that when you place your mouse on this icon, the text written in the **Comment** field displays in a tooltip box.

For advanced use of Documentations, you can use the **Documentation** view in order to store and reuse any type of documentation.

Finding Jobs containing a specific component

About this task

Note:

You should open one Job at least in the Studio to display the **Palette** to the right of the design workspace and thus start the search.

From the **Palette**, you can search for all the Jobs that use the selected component. To do so:

Procedure

1. In the **Palette**, right-click the component you want to look for and select **Find Component in Jobs**.
A progress indicator displays to show the percentage of the search operation that has been completed then the Find a Job dialog box displays listing all the Jobs that use the selected component.

2. From the list of Jobs, click the desired Job and then click OK to open it on the design workspace.

Setting default values in the schema of a component in a Job

About this task
You can set default values in the schema of certain components to replace null values retrieved from the data source.

Note:
At present, only tFileInputDelimited, tFileInputExcel, and tFixedFlowInput support default values in the schema.
In the following example, the company and city fields of some records of the source CSV file are left blank, as shown below. The input component reads data from the source file and completes the missing information using the default values set in the schema, Talend and Paris respectively.

<table>
<thead>
<tr>
<th>id;firstName;lastName;company;city;phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1;Michael;Jackson;IBM;Roma;2323</td>
</tr>
<tr>
<td>2;Elisa;Black;Microsoft;London;4499</td>
</tr>
<tr>
<td>3;Michael;Dujardin;;8872</td>
</tr>
<tr>
<td>4;Marie;Dolvina;;6655</td>
</tr>
<tr>
<td>5;Jean;Perfide;;3344</td>
</tr>
<tr>
<td>6;Emilie;Taldor;Oracle;Madrid;2266</td>
</tr>
<tr>
<td>7;Anne-Laure;Paldufier;Apple;;4422</td>
</tr>
</tbody>
</table>

To set default values:

Procedure

1. Double-click the input component tFileInputDelimited to show its Basic settings view.

 ![Diagram of tFileInputDelimited component]

 In this example, the metadata for the input component is stored in the Repository. For information about metadata creation in the Repository, see Centralizing database metadata on page 207.

2. Click the [...] button next to Edit schema, and select the Change to built-in property option from the pop-up dialog box to open the schema editor.

3. Enter Talend between quotation marks in the Default field for the company column, enter Paris between quotation marks in the Default field for the city column, and click OK to close the schema editor.
4. Configure the output component **tLogRow** to display the execution result the way you want, and then run the Job.

In the output data flow, the missing information is completed according to the set default values.

Using the tPrejob and tPostjob components

The **tPrejob** and **tPostjob** components are designed to make the execution of tasks before and after a given job easier to manage. These components differ from other components in that they do not actually process data and they do not have any components properties to be configured. A key feature of these components is that they are always guaranteed to be executed, even if the main data Job fails. Therefore, they are very useful for setup and teardown actions for a given Job.
Note:
As tPrejob and tPostjob are not meant to take part in any data processing, they cannot be part of a multi-thread execution. They are meant to help you make your Job design clearer.

To use these tPrejob and tPostjob components, simply drop them onto the design workspace as you would do with any other components, and then connect tPrejob to a component or subJob that is meant to perform a pre-job task, and tPostjob to a component or subJob that is meant to perform a post-job task, using Trigger connections. An orange square on the pre- and post-job parts indicates that they are different types of subJobs.

Tasks that require the use of a tPrejob component include:
- Loading context information required for the subJob execution.
- Opening a database connection.
- Making sure that a file exists.

Tasks that require the use of a tPostjob component include:
- Cleaning up temporary files created during the processing of the main data Job.
- Closing a database connection or a connection to an external service.
- Any task required to be executed, even if the preceding Job or subJobs failed.

For a use case that uses the tPrejob and tPostjob components, see Talend Help Center (https://help.talend.com).

Downloading/uploading Talend Community components

Talend Studio enables you to access a list of all community components in Talend Exchange that are compatible with your current version of Talend Studio. You can then download and install these components to use them later in the Job designs you carry out in the Studio. From Talend Studio, you can also upload components you have created to Talend Exchange to share with other community users.

A click on the Exchange link on the toolbar of Talend Studio opens the Exchange tab view on the design workspace, where you can find lists of:
• components available in **Talend Exchange** for you to download and install,
• components you downloaded and installed in previous versions of Talend Studio but not installed yet in your current Studio,
• components you have created and uploaded to **Talend Exchange** to share with other **Talend** Community users.

Note that the approach explained in this section is to be used for the above-mentioned components only.

Note:

- Before you can download community components or upload your own components to the community, you need to sign in to **Talend Exchange** from your Studio first. If you did not sign in to **Talend Exchange** when launching the Studio, you still have a chance to sign in from the **Talend Exchange** preferences settings page. For more information, see Exchange preferences (Talend > Exchange) on page 491.
- The community components available for download are not validated by **Talend**. This explains why you may encounter component loading errors sometimes when trying to install certain community components, why an installed community component may have a different name in the Palette than in the Exchange tab view, and why you may not be able to find a component in the Palette after it is seemingly installed successfully.

Installing community components from Talend Exchange

About this task

To install community components from **Talend Exchange** to the **Palette** of your current Talend Studio:

Procedure

1. Click the **Exchange** link on the toolbar of Talend Studio to open the **Exchange** tab view on the design workspace.

<table>
<thead>
<tr>
<th>Extension Name</th>
<th>Version</th>
<th>Rating</th>
<th>Author</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook Application Insights Component</td>
<td>0.1</td>
<td>★★★★★</td>
<td>saburo</td>
<td>view/download</td>
</tr>
<tr>
<td>tFileOutputDelimitedEx</td>
<td>1.0</td>
<td>★★★★★</td>
<td>Alezis</td>
<td>view/download</td>
</tr>
<tr>
<td>tScriptRules</td>
<td>1.0</td>
<td>★★★★★</td>
<td>walkerca</td>
<td>view/download</td>
</tr>
<tr>
<td>tWorldBank components Demo</td>
<td>0.2</td>
<td>★★★★★</td>
<td>saburo</td>
<td>view/download</td>
</tr>
<tr>
<td>pUpdateMailOffer</td>
<td>V02</td>
<td>★★★★★</td>
<td>PayZen</td>
<td>view/download</td>
</tr>
<tr>
<td>pCreateMailOffer</td>
<td>V02</td>
<td>★★★★★</td>
<td>PayZen</td>
<td>view/download</td>
</tr>
<tr>
<td>tDBFOutput</td>
<td>1.1</td>
<td>★★★★☆</td>
<td>BiSi</td>
<td>view/download</td>
</tr>
<tr>
<td>tDBFInput</td>
<td>1.1</td>
<td>★★★★☆</td>
<td>BiSi</td>
<td>view/download</td>
</tr>
<tr>
<td>pCreatePayment</td>
<td>V06</td>
<td>★★★★☆</td>
<td>PayZen</td>
<td>view/download</td>
</tr>
</tbody>
</table>

2. In the **Available Extensions** view, if needed, enter a full component name or part of it in the text field and click the fresh button to find quickly the component you are interested in.
3. Click the **view/download** link for the component of interest to display the component download page.

![Component Download Page](image)

tPDFToText

Version 1.1

2011-05-17

Convert a PDF to text file. It's possible to extract a delimited area.

![Component Information](image)

4. View the information about the component, including component description and review comments from community users, or write your own review comments and/or rate the component if you want. For more information on reviewing and rating a community component, see [Reviewing and rate a community component](#) on page 56.

If needed, click the left arrow button to return to the component list page.

5. Click the **Install** button in the right part of the component download page to start the download and installation process.

A progress indicator appears to show the completion percentage of the download and installation process. Upon successful installation of the component, the **Downloaded Extensions** view opens and displays the status of the component, which is **Installed**.
Reinstalling or update community components

About this task

From the Exchange tab view, you can reinstall components you already downloaded and installed in your previous version of Talend Studio or install the updated version of Talend Studio or components in your current Studio.

Note:

By default, while you are connected to Talend Exchange, a dialog box appears to notify you whenever an update to an installed community component is available. If you often check for community component updates and you do not want that dialog box to appear again, you can turn it off in Talend Exchange preferences settings. For more information, see Exchange preferences (Talend > Exchange) on page 491.

To reinstall a community component you already downloaded or update an installed one, do the following:

Procedure

1. From the Exchange tab view, click Downloaded Extensions to display the list of components you have already downloaded from Talend Exchange.

 In the Downloaded Extensions view, the components you have installed in your previous version of Talend Studio but not in your current Studio have an Install link in the Install/Update column, and those with updates available in Talend Exchange have an Update link.

2. Click the Install or Update link for the component of interest to start the installation process.

 A progress indicator appears to show the completion percentage of the installation process. Upon successful installation, the Downloaded Extensions view displays the status of the component, which is Installed.

Reviewing and rate a community component

About this task

To review and rate a community component:
Procedure

1. From the **Available Extensions** view, click the **view/download** link for the component you want to review or rate to open the community component download page.

2. On the component download page, click the **write a review** link to open the **Review the component** dialog box.

3. Fill in the required information, including a title and a review comment, click **Submit Review** to submit your review to the **Talend Exchange** server.

 Upon validation by the **Talend Exchange** moderator, your review is published on **Talend Exchange** and displayed in the **User Review** area of the component download page.

Uploading a component you created to Talend Exchange

About this task

You can create your own components for use in your Jobs in Talend Studio and upload them to **Talend Exchange** to share with other **Talend** Community users. For information on how to create your own components and deploy them in Talend Studio, see **How to define the user component folder (Talend > Components)** on page 489.

To upload a component you created to **Talend Exchange**, complete the following:

Procedure

1. From the **Exchange** tab view, click **My Extensions** to open the **My Extensions** view.
2. Click the **Add New Extension** link in the upper right part of the view to open the component upload page.

![Add New Extension](image)

3. Complete the required information, including the component title, initial version, Studio compatibility information, and component description, fill in or browse to the path to the source package in the **File** field, and click the **Upload Extension** button. Upon successful upload, the component is listed in the **My Extensions** view, where you can update, modify and delete any component you have uploaded to **Talend Exchange**.

![My Extensions](image)

Managing components you uploaded to Talend Exchange

From the **Exchange** tab view, you can manage components you have uploaded to **Talend Exchange**, including updating component version, modifying component information, and deleting components from **Talend Exchange**.

To update the version of a component, complete the following:
1. From the **My Extensions** view, click the 🔄 icon in the **Operation** column for the component you want to update to open the component update page.

![Update Extension Form]

- **Initial Version:** 2.0
- **Compatibility:**
 - All versions
 - Version and older:
 - Versions and newer:
 - All versions except:
 - Only these versions:
- **File:** D:\Work\Components\tExEvaluate.zip

2. Fill in the initial version and Studio compatibility information, fill in or browse to the path to the source package in the **File** field, and click the **Update Extension** button.

Upon successful upload of the updated component, the component is replaced with the new version on **Talend Exchange** and the **My Extension** view displays the component’s new version and update date.

To modify the information of a component uploaded to **Talend Exchange**, complete the following:

1. From the **My Extensions** view, click the 🆕️ icon in the **Operation** column for the component you want to modify information for to open the component information editing page.

![Modify Extension Form]

- **Extension Title:** tExEvaluate
- **Compatibility:**
 - All versions
 - Version and older:
 - Versions and newer: 5.1
 - All versions except:
 - Only these versions:
- **Description:** tExEvaluate evaluates the execution of a Job. It requires tExCatcher to work with it.
2. Complete the Studio compatibility information and component description, and click the **Modify Extension** button to update the component information to **Talend Exchange**.

To delete a component you have uploaded to **Talend Exchange**, click ✗ icon for the component from the **My Extensions** view. The component is then removed from **Talend Exchange** and is no longer displayed on the component list in the **My Extensions** view.

Using connections in a Job

In Talend Studio, a Job or a subjob is composed of a group of components logically linked to one another via connections. You need to use the connections to define how the components in use are coordinated. This section will describe the types of connections and their related settings.

Connection types

There are various types of connections which define either the data to be processed, the data output, or the Job logical sequence.

Right-click a component on the design workspace to display a contextual menu that lists all available connections for the selected component.

The sections below describe all available connection types.

Row connection

A **Row** connection handles the actual data. The **Row** connections can be **Main**, **Lookup**, **Reject**, **Output**, **Uniques/Duplicates**, or **Combine** according to the nature of the flow processed.

Main

This type of row connection is the most commonly used connection. It passes on data flows from one component to the other, iterating on each row and reading input data according to the component properties setting (schema).

Data transferred through main rows are characterized by a schema definition which describes the data structure in the input file.

Note:

You cannot connect two Input components together using a **Row > Main** connection. Only one incoming **Row** connection is possible per component. You will not be able to link twice the same target component using a main **Row** connection. The second **Row** connection will be called **Lookup**.

![Diagram of row connections](image)
To connect two components using a Main connection, right-click the input component and select **Row > Main** on the connection list.

Alternatively, you can click the component to highlight it, then right-click it or click the O icon that appears on side of it and drag the cursor towards the destination component. This will automatically create a **Row > Main** type of connection.

For information on using multiple Row connections, see **Multiple Input/Output** on page 62.

Lookup

This row connection connects a sub-flow component to a main flow component (which should be allowed to receive more than one incoming flow). This connection is used only in the case of multiple input flows.

A **Lookup** row can be changed into a main row at any time (and reversely, a main row can be changed to a lookup row). To do so, right-click the row to be changed, and on the pop-up menu, click **Set this connection as Main**.

Related topic: **Multiple Input/Output** on page 62.

Filter

This row connection connects specifically a tFilterRow component to an output component. This row connection gathers the data matching the filtering criteria. This particular component offers also a **Reject** connection to fetch the non-matching data flow.

Rejects

This row connection connects a processing component to an output component. This row connection gathers the data that does NOT match the filter or are not valid for the expected output. This connection allows you to track the data that could not be processed for any reason (wrong type, undefined null value, etc.). On some components, this connection is enabled when the **Die on error** option is deactivated.

ErrorReject

This row connection connects a tMap component to an output component. This connection is enabled when you clear the **Die on error** check box in the tMap editor and it gathers data that could not be processed (wrong type, undefined null value, unparsable dates, etc.).
Related topic: Handling errors on page 155.

Output

This row connection connects a tMap component to one or several output components. As the Job output can be multiple, you get prompted to give a name for each output row created.

Note:
The system also remembers deleted output connection names (and properties if they were defined). This way, you do not have to fill in again property data in case you want to reuse them.

Related topic: Multiple Input/Output on page 62.

Uniques/Duplicates

These row connection connect a tUniqRow to output components.

The Uniques connection gathers the rows that are found first in the incoming flow. This flow of unique data is directed to the relevant output component or else to another processing subjob.

The Duplicates connection gathers the possible duplicates of the first encountered rows. This reject flow is directed to the relevant output component, for analysis for example.

Multiple Input/Output

Some components help handle data through multiple inputs and/or multiple outputs. These are often processing-type components such as the tMap.

If this requires a join or some transformation in one flow, you want to use the tMap component, which is dedicated to this use.

For further information regarding data mapping, see Map editor interfaces on page 132.

Combine

This type of row connection connects one CombinedSQL component to another.

When right-clicking the CombinedSQL component to be connected to the next one, select Row > Combine.

Iterate connection

The Iterate connection can be used to loop on files contained in a directory, on rows contained in a file or on DB entries.

A component can be the target of only one Iterate connection. The Iterate connection is mainly to be connected to the start component of a flow (in a subjob).

Some components such as the tFileList component are meant to be connected through an iterate connection with the next component. For how to set an Iterate connection, see Iterate connection settings on page 65.

Note: The name of the Iterate connection is read-only unlike other types of connections.

Warning: Note that globalMap is thread unsafe. Be cautious when using globalMap.put("key","value") and globalMap.get("key") to create your own global variables and then retrieve their values in your Jobs, especially after an Iterate connection with the parallel execution option enabled.
Trigger connections

Trigger connections define the processing sequence, so no data is handled through these connections. The connection in use will create a dependency between Jobs or subJobs which therefore will be triggered one after the other according to the trigger nature.

<table>
<thead>
<tr>
<th>Row</th>
<th>Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Subjob Ok</td>
</tr>
<tr>
<td></td>
<td>On Subjob Error</td>
</tr>
<tr>
<td></td>
<td>Run if</td>
</tr>
<tr>
<td></td>
<td>On Component Ok</td>
</tr>
<tr>
<td></td>
<td>On Component Error</td>
</tr>
</tbody>
</table>

Trigger connections fall into two categories:

- subJob triggers: **On Subjob Ok**, **On Subjob Error** and **Run if**,
- component triggers: **On Component Ok**, **On Component Error** and **Run if**.

OnSubjobOK (previously **Then Run**): This connection is used to trigger the next subJob on the condition that the main subJob completed without error. This connection is to be used only from the start component of the Job.

These connections are used to orchestrate the subJobs forming the Job or to easily troubleshoot and handle unexpected errors.

OnSubjobError: This connection is used to trigger the next subJob in case the first (main) subJob do not complete correctly. This "on error" subJob helps flagging the bottleneck or handle the error if possible.

OnComponentOK and **OnComponentError** are component triggers. They can be used with any source component on the subJob.

OnComponentOK will only trigger the target component once the execution of the source component is complete without error. Its main use could be to trigger a notification subJob for example.

OnComponentError will trigger the subJob or component as soon as an error is encountered in the primary Job.
Run if triggers a subjob or component in case the condition defined is met. For further information about Run if, see Run if connection settings on page 65.

For how to set a trigger condition, see Trigger connection settings on page 65.

Link connection

The Link connection can only be used with ELT components. These connections transfer table schema information to the ELT mapper component in order to be used in specific DB query statements. The Link connection therefore does not handle actual data but only the metadata regarding the table to be operated on.

When right-clicking the ELT component to be connected, select Link > New Output.

Warning:

Be aware that the name you provide to the connection must reflect the actual table name.

In fact, the connection name will be used in the SQL statement generated through the ETL Mapper, therefore the same name should never be used twice.

Defining connection settings

You can display the properties of a connection by selecting it and clicking the Component view tab, or by right-clicking the connection and selecting Settings from the contextual menu. This section summarizes connection property settings.

Row connection settings

About this task

The Basic settings vertical tab of the Component view of the connection displays the schema of the data flow handled by the connection. You can change the schema by clicking the Edit schema button. For more information, see Setting a built-in schema in a Job on page 40.

The Advanced settings vertical tab lets you monitor the data flow over the connection in a Job without using a separate tFlowMeter component.
To monitor the data over the connection, perform the following settings in the **Advanced settings** vertical tab:

Procedure

1. Select the **Monitor this connection** check box.
2. From the **Mode** list, select **Absolute** to log the actual number of rows passes over the connection, or **Relative** to log the ratio (%) of the number of rows passed over this connection against a reference connection. If you select **Relative**, you need to select a reference connection from the **Connections List** list.
3. Click the plus button to add a line in the **Thresholds** table and define a range of the number of rows to be logged.

Iterate connection settings

When you configure an Iterate connection, you are actually enabling parallel iterations. For further information, see **Launching parallel iterations to read data** on page 131.

Trigger connection settings

Run if connection settings

About this task

In the **Basic settings** view of a **Run if** connection, you can set the condition to the subjob in Java. You can use variables in your condition. Pressing **Ctrl+Space** allows you to access all global and context variables. For more information, see **Using variables in a Job** on page 80.

Warning:

When adding a comment after the condition, be sure to enclose it between /* and */ even if it is a single-line comment.

In the following example, a message is triggered if the input file contains 0 rows of data.
Procedure

1. Create a Job and drop three components to the design workspace: a tFileInputDelimited, a tLogRow, and a tMsgBox.

2. Connect the components as follows:
 - Right-click the tFileInputDelimited component, select Row > Main from the contextual menu, and click the tLogRow component.
 - Right-click the tFileInputDelimited component, select Trigger > Run if from the contextual menu, and click the tMsgBox component.

3. Configure the tFileInputDelimited component so that it reads a file that contains no data rows.

4. Select the Run if connection between the tFileInputDelimited component and the tMsgBox component, and click the Component view. In the Condition field on the Basic settings tab, pressing Ctrl+Space to access the variable list, and select the NB_LINE variable of the tFileInputDelimited component. Edit the condition as follows:

   ```java
   ((Integer)globalMap.get("tFileInputDelimited_1_NB_LINE"))==0
   ```

5. Go to the Component view of the tMsgBox component, and enter a message, “No data is read from the file” for example, in the Message field.

6. Save and run the Job. You should see the message you defined in the tMsgBox component.

Using contexts and variables

Variables represent values which change throughout the execution of a program. A global variable is a system variable which can be accessed by any module or function. It retains its value after the function or program using it has completed execution.
Warning: Note that globalMap is thread unsafe. Be cautious when using `globalMap.put("key", "value")` and `globalMap.get("key")` to create your own global variables and then retrieve their values in your Jobs, especially after an Iterate connection with the parallel execution option enabled.

A context variable is a variable which is defined by the user for a particular context. Depending on the circumstances the Job is being used in, you might want to manage it differently for various execution types, known as contexts (Prod and Test in the example given below). For instance, there might be various testing stages you want to perform and validate before a Job is ready to go live for production use.

A context is characterized by parameters. These parameters are mostly context-sensitive variables which will be added to the list of variables for reuse in the component-specific properties on the Component view through the Ctrl+Space keystrokes.

Talend Studio offers you the possibility to create multiple context data sets. Furthermore you can either create context data sets on a one-shot basis from the context tab of a Job, or you can centralize the context data sets in the Contexts node of the Repository tree view in order to reuse them in different Jobs.

For a Job, you can define the values of your context variables when creating them, or load your context parameters dynamically, either explicitly using the tContextLoad component or implicitly using the Implicit Context Load feature, when your Jobs are executed.

This section describes how to create contexts and variables and define context parameter values. For an example of loading context parameters dynamically using the tContextLoad component, see Reading data from different MySQL databases using dynamically loaded connection parameters on Talend Help Center (https://help.talend.com). For an example of loading context parameters dynamically using the Implicit Context Load feature, see Using the Implicit Context Load feature on Talend Help Center (https://help.talend.com).

Defining context variables for a Job

You can define context variables for a particular Job in two ways:

- Using the Contexts view of the Job. See Defining context variables in the Contexts view on page 67.
- Using the F5 key from the Component view of a component. See Defining variables from the Component view on page 71.

Defining context variables in the Contexts view

The Contexts view is positioned among the configuration tabs below design workspace.

The Contexts tab view shows all of the variables that have been defined in the current Job and context variables imported into the current Job.
From this view, you can manage your built-in variables:

- Create and manage built-in contexts.
- Create, edit and delete built-in variables.
- Reorganize the context variables.
- Add built-in context variables to the Repository.
- Import variables from a Repository context source for use in the current Job.
- Edit Repository-stored context variables and update the changes to the Repository.
- Remove imported Repository variables from the current Job.

The following example will demonstrate how to define two contexts named **Prod** and **Test** and a set of variables - **host**, **port**, **database**, **username**, **password**, and **table_name** - under the two contexts for a Job.

Defining contexts

Procedure

1. Open the Job in the design workspace and go to the **Contexts** view.

 If the **Contexts** view is not displayed, select **Window > Show view > TalendContexts** to open the **Contexts** view in the **Integration** perspective.

2. Click the [+] button at the top right corner.

 The **Configure Contexts** dialog box opens and a context named **Default** is created by default.

3. Select the default context and click **Edit** to rename it, **Prod** in this example. Then click **OK**.

4. In the open dialog box, click **New...** and enter **Test** in the **New Context** dialog box, click **OK**.

5. Select the check box preceding the context you want to set as the default context.

 You can also set the default context by selecting the context name from the **Default context environment** list in the **Contexts** tab view.

 If needed, move a context up or down by selecting it and clicking the **Up** or **Down** button.

Example

In this example, set **Test** as the default context and move it up.
6. Click **OK** to validate your context definition and close the dialog box.

 The newly created contexts are shown in the context variables table of the **Contexts** view.

7. Repeat the above steps to create as many new contexts as needed.

 If you do not want to define the values of each new context from scratch, you can create the first context and define all its values, as when you create a new one all the parameters of the context selected as default are copied to the new context. You can then modify the values of the new context as needed.

Defining variables

Procedure

1. Click the [+] button at the bottom of the **Contexts** view to add lines in the table.

2. Click in the **Name** field and enter the name of the variable you are creating.

 Name the first variable **host** for this example.

3. From the **Type** list, select the type of the variable.

4. If needed, click in the **Comment** field and enter a comment to describe the variable.

5. Click in the **Value** field and enter the variable value under each context.

 For different variable types, the **Value** field appear slightly different when you click in it and functions differently:
<table>
<thead>
<tr>
<th>Type</th>
<th>Value field</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>String (default type)</td>
<td>Editable text field</td>
<td>null</td>
</tr>
<tr>
<td>Boolean</td>
<td>Drop-down list box with two options: true and false</td>
<td></td>
</tr>
<tr>
<td>Character, Double, Integer, Long, Short, Object, BigDecimal</td>
<td>Editable text field</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Editable text field, with a button to open the Select Date & Time dialog box.</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>Editable text field, with a button to open the Open dialog box for file selection.</td>
<td></td>
</tr>
<tr>
<td>Directory</td>
<td>Editable text field, with a button to open the Browse for Folder dialog box for folder selection.</td>
<td></td>
</tr>
<tr>
<td>List of Value</td>
<td>Editable text field, with a button to open the Configure Values dialog box for list creation and configuration.</td>
<td>(Empty)</td>
</tr>
<tr>
<td>Password</td>
<td>Editable text field; text entered appears encrypted.</td>
<td></td>
</tr>
</tbody>
</table>

Warning: It is recommended that you enclose the values of string type variables between double quotation marks to avoid possible errors during Job execution.

6. If needed, select the check box next to the variable of interest and enter the prompt message in the corresponding **Prompt** field.

This allows you to see a prompt for the variable value and to edit it at the execution time. You can show/hide a **Prompt** column of the table by clicking the black right/left pointing triangle next to the relevant context name.

7. Repeat the above steps to define all the variables for the different contexts.

- **port**, type **String**,
- **database**, type **String**,
- **username**, type **String**,
- **password**, type **Password**,
- **table_name**, type **String**.

Results

All the variables created and their values under different contexts are displayed in the table and are ready for use in your Job. You can further edit the variables in this view if needed.

You can also add a built-in context variable to the Repository to make it reusable across different Jobs. For more information, see Adding a built-in context variable to the Repository on page 76.

Related topics:
- Defining variables from the Component view on page 71
- Centralizing context variables in the Repository on page 72
- Using variables in a Job on page 80
- Running a Job in a selected context on page 81
Defining variables from the Component view

About this task

The quickest way to create a single context variable is to use the F5 key from the Component view. The following example demonstrates how to create a context variable while configuring a file path for a component in a Job.

Procedure

1. On the relevant Component view, place your cursor in the field you want to parameterize.
2. Press F5 to display the New Context Parameter dialog box:

 ![New Context Parameter dialog box]

3. Give a Name to this new variable, fill in the Comment field if needed, and choose the Type.

 Note: The variable name should follow some typing rules and should not contain any forbidden characters, such as space character.

4. Enter a Prompt to be displayed to confirm the use of this variable in the current Job execution (generally used for test purpose only), select the Prompt for value check box to display the prompt message and an editable value field at the execution time.

5. If you filled in a value already in the corresponding properties field, this value is displayed in the Default value field. Else, type in the default value you want to use for one context.

6. Click Finish to validate.

7. Go to the Contexts view tab. Notice that the context variables tab lists the newly created variables.

Results

The newly created variables are listed in the Contexts view. The variable created this way is automatically stored in all existing contexts, but you can subsequently change the value.
Data Integration

independently in each context. For more information on how to create or edit a context, see Defining contexts on page 68.

Related topics:

- Defining context variables in the Contexts view on page 67
- Centralizing context variables in the Repository on page 72
- Using variables in a Job on page 80
- Running a Job in a selected context on page 81

Centralizing context variables in the Repository

Context variables centrally stored in the Repository can be reused across various Jobs.

You can store context variables in the Repository in different ways:

- Creating a context group using the Create / Edit a context group wizard. See Creating a context group and define context variables in it on page 72 for details.
- Adding a built-in context variable to an existing or new context group in the Repository. See Adding a built-in context variable to the Repository on page 76 for details.
- Saving a context from metadata. See Creating a context from a Metadata on page 78 for more information.

Creating a context group and define context variables in it

The following example will demonstrate how to use the Create / Edit a context group wizard to create a context group named TalendDB that contains two contexts named Prod and Test and define a set of variables - host, port, database, username, password, and table_name - under the two contexts in the Repository, for reuse in database handling Jobs.

Once you created and adapted as many context sets as you want, click Finish to validate. The group of contexts thus displays under the Contexts node in the Repository tree view. You can further edit the context group, contexts, and context variables in the wizard by right-clicking the Contexts node and selecting Edit context group from the contextual menu.

Related topics:

- Adding a built-in context variable to the Repository on page 76
- Creating a context from a Metadata on page 78
- Applying Repository context variables to a Job on page 78
- Defining context variables for a Job on page 67.
- Using variables in a Job on page 80
- Running a Job in a selected context on page 81

Creating the context group and contexts

Procedure

1. Right-click the Contexts node in the Repository tree view and select Create context group from the contextual menu.
 A 2-step wizard appears to help you define the various contexts and context parameters.

2. In Step 1 of 2, type in a name for the context group to be created, TalendDB in this example, and add any general information such as a description if required. The information you provide in the Description field will appear as a tooltip when you move your mouse over the context group in the Repository.
3. Click **Next** to go to Step 2 of 2, which allows you to define the various contexts and variables that you need.

A context named **Default** has been created and set as the default one by the system.

4. Click the [+] button at the upper right corner of the wizard to define contexts. The **Configure Contexts** dialog box pops up.
5. Select the context Default, click the Edit... button and enter Prod in the Rename Context dialog box that opens to rename the context Default to Prod. Then click OK to close the dialog box.

6. Click the New... button and enter Test in the New Context dialog box. Then click OK to close the dialog box.

7. Select the check box preceding the context you want to set as the default context. You can also set the default context by selecting the context name from the Default context environment list on the wizard.
 If needed, move a context up or down by selecting it and clicking the Up or Down button.
 In this example, set Test as the default context and move it up.
8. Click **OK** to validate your context definition and close the **Configure Contexts** dialog box. The newly created contexts are shown in the context variables table of the wizard.

![Screenshot of context variables table](image)

Defining context variables

Procedure

1. Click the [+] button at the bottom of the wizard to add a parameter line in the table.
2. Click in the **Name** field and enter the name of the variable you are creating, *host* in this example.
3. From the **Type** list, select the type of the variable corresponding to the component field where it will be used, *String* for the variable *host* in this example.
4. If needed, click in the **Comment** field and enter a comment to describe the variable.
5. Click in **Value** field and enter the variable value under each context. For different variable types, the **Value** field appear slightly different when you click in it and functions differently:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value field</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>String (default type)</td>
<td>Editable text field</td>
<td>null</td>
</tr>
<tr>
<td>Boolean</td>
<td>Drop-down list box with two options: true and false</td>
<td></td>
</tr>
<tr>
<td>Character, Double, Integer, Long, Short, Object, BigDecimal</td>
<td>Editable text field</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Editable text field, with a button to open the Select Date & Time dialog box.</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>Editable text field, with a button to open the Open dialog box for file selection.</td>
<td></td>
</tr>
</tbody>
</table>
Data Integration

<table>
<thead>
<tr>
<th>Type</th>
<th>Value field</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
<td>Editable text field, with a button to open the Browse for Folder dialog box for folder selection.</td>
<td></td>
</tr>
<tr>
<td>List of Value</td>
<td>Editable text field, with a button to open the Configure Values dialog box for list creation and configuration.</td>
<td>(Empty)</td>
</tr>
<tr>
<td>Password</td>
<td>Editable text field; text entered appears encrypted.</td>
<td></td>
</tr>
</tbody>
</table>

Warning: It is recommended that you enclose the values of string type variables between double quotation marks to avoid possible errors during Job execution.

6. If needed, select the check box next to the variable of interest and enter the prompt message in the corresponding **Prompt** field. This allows you to see a prompt for the variable value and to edit it at the execution time.

You can show/hide a **Prompt** column of the table by clicking the black right/left pointing triangle next to the relevant context name.

7. Repeat the steps above to define all the variables in this example.

- **port**, type **String**,
- **database**, type **String**,
- **username**, type **String**,
- **password**, type **Password**,
- **table_name**, type **String**

All the variables created and their values under different contexts are displayed in the table and are ready for use in your Job. You can further edit the variables if needed.

Adding a built-in context variable to the Repository

About this task

You can save a built-in context variable defined in a Job to a new context group, or an existing context group provided that the context variable does not already exist in the group.
Procedure

1. In the Context tab view of a Job, right-click the context variable you want to add to the Repository and select Add to repository context from the contextual menu to open the Repository Content dialog box.

![Contexts dialog box](image)

2. In the dialog box, do either of the following:
 - to add your context variable to a new context group, select Create new context group and enter a name for the new context group in the Group Name field, and then click OK.
 - to add your context variable to an existing context group, select the context group and click OK.

Warning: When adding a built-in context variable to an existing context group, make sure that the variable does not already exist in the context group.

In this example, add the context variable **password** defined in a Job to a new context group named **DB_login**.

![Repository Content dialog box](image)

The context variable is added to the Repository context group of your choice, along with the defined built-in contexts, and it appears as a Repository-stored context variable in the Contexts tab view.
Results

Related topics:

• Creating a context group and define context variables in it on page 72
• Creating a context from a Metadata on page 78
• Applying Repository context variables to a Job on page 78
• Defining context variables for a Job on page 67.
• Using variables in a Job on page 80
• Running a Job in a selected context on page 81

Creating a context from a Metadata

When creating or editing a metadata connection (through a File or DB metadata wizard), you have the possibility to save the connection parameters as context variables in a newly created context group under the **Contexts** node of the Repository. To do so, complete your connection details and click the **Export as context** button in the second step of the wizard.

For more information about this feature, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

Applying Repository context variables to a Job

Once a context group is created and stored in the **Repository**, there are two ways of applying it to a Job:

• Drop a context group. This way, the group is applied as a whole. See Dropping a context group onto a Job on page 78 for details.

• Use the button. This way, the variables of a context group can be applied separately. See Applying context variables to a Job using the context button on page 79 for details.

Dropping a context group onto a Job

About this task

To drop a context group onto a Job, proceed as follows:

Procedure

1. Double-click the Job to which a context group is to be added.
2. Once the Job is opened, drop the context group of your choice either onto the design workspace or onto the **Contexts** view beneath the workspace.
The **Contexts** view shows all the contexts and variables of the group. You can:

- edit the contexts by clicking the [+] button at the upper right corner of the **Contexts** view.
- delete the whole group or any variable by selecting the group name or the variable and clicking the **X** button.
- save any imported context variable as a built-in variable by right-click it and selecting **Add to built-in** from the contextual menu.
- double-click any context variable to open the context group in the **Create / Edit a context group** wizard and update changes to the Repository.

Applying context variables to a Job using the context button

About this task

To use the context button to apply context variables to a Job, proceed as follows:

Procedure

1. Double-click the Job to which a context variable is to be added.
2. Once the Job is opened in the workspace, click the **Contexts** view beneath the workspace to open it.
3. At the bottom of the **Contexts** view, click the button to open the wizard to select the context variables to be applied.
4. In the wizard, select the context variables you need to apply or clear those you do not need to.

 Note: The context variables that have been applied are automatically selected and cannot be cleared.

5. Click **OK** to apply the selected context variables to the Job.

 The **Contexts** view shows the context group and the selected context variables. You can edit the contexts by clicking the [+] button at the upper right corner of the **Contexts** view, delete the whole group or any variable by selecting the group name or the variable and clicking the X button, but you cannot edit Repository-stored variables in this view.

Using variables in a Job

About this task

You can use an existing global variable, a context variable defined in your Job, or a Repository-stored context variable applied to your Job in any component properties field.

Procedure

1. In the relevant **Component** view, place your mouse in the field you want to parameterize and press **Ctrl+Space** to display a full list of all the global variables and those context variables defined in or applied to your Job.

 The list grows along with new user-defined variables (context variables).
2. Double-click the variable of your choice to fill it in the field.

Results

Related topics:
- Defining context variables for a Job on page 67
- Centralizing context variables in the Repository on page 72
- Applying Repository context variables to a Job on page 78
- Running a Job in a selected context on page 81

Running a Job in a selected context

You can select the context you want the Job design to be executed in.

Procedure
1. Click the Run tab.
2. In the Context area, select the relevant context among the various ones you created.

If you did not create any context, only the Default context shows on the list.

All the context variables you created for the selected context display, along with their respective values, in a table underneath.

To make a change permanent in a variable value, you need to change it on the Context view if your variable is of type built-in or in the Context group of the repository.

Related topics:
Data Integration

- Defining context variables for a Job on page 67
- Centralizing context variables in the Repository on page 72
- Applying Repository context variables to a Job on page 78
- Using variables in a Job on page 80

Handling Jobs: advanced subjects

The sections below give detail information about various advanced configuration situations of a data integration Job including handling multiple input and output flows, using SQL queries, using external components in the Job, scheduling a task to run your Job.

Creating queries using the SQLBuilder

SQLBuilder helps you create your SQL queries and monitor the changes between DB tables and metadata tables. This editor is available in all DBInput and DBSQLRow components (specific or generic).

You can create a query using the SQLBuilder whether your database table schema is stored in the Repository tree view or built-in directly in the Job.

Fill in the DB connection details and select the appropriate repository entry if you defined it.

Remove the default query statement in the Query field of the Basic settings view of the Component panel. Then click the [...] button to open the SQL Builder editor.

The SQL Builder editor is made of the following panels:
• Current Schema,
• Database structure,
• Query editor made of editor and designer tabs,
• Query execution view,
• Schema view.

The Database structure shows the tables for which a schema was defined either in the repository database entry or in your built-in connection.

The schema view, in the bottom right corner of the editor, shows the column description.

Comparing database structures

On the Database Structure panel, you can see all tables stored in the DB connection metadata entry in the Repository tree view, or in case of built-in schema, the tables of the database itself.

Note:
The connection to the database, in case of built-in schema or in case of a refreshing operation of a repository schema might take quite some time.

Click the refresh icon to display the differences between the DB metadata tables and the actual DB tables.

The Diff icons point out that the table contains differences or gaps. Expand the table node to show the exact column containing the differences.

The red highlight shows that the content of the column contains differences or that the column is missing from the actual database table.

The blue highlight shows that the column is missing from the table stored in Repository > Metadata.
Creating a query

About this task

The **SQL Builder** editor is a multiple-tab editor that allows you to write or graphically design as many queries as you want.

To create a new query, complete the following:

Procedure

1. Right-click the table or on the table column and select **Generate Select Statement** on the pop-up list.
2. Click the empty tab showing by default and type in your SQL query or press **Ctrl+Space** to access the autocompletion list. The tooltip bubble shows the whole path to the table or table section you want to search in.

![Image of SQL Builder editor](image)

Alternatively, the graphical query **Designer** allows you to handle tables easily and have real-time generation of the corresponding query in the **Edit** tab.

3. Click the **Designer** tab to switch from the manual **Edit** mode to the graphical mode.

Note:

You may get a message while switching from one view to the other as some SQL statements cannot be interpreted graphically.

4. If you selected a table, all columns are selected by default. Clear the check box facing the relevant columns to exclude them from the selection.

5. Add more tables in a simple right-click. On the **Designer** view, right-click and select **Add tables** in the pop-up list then select the relevant table to be added.

 If joins between these tables already exist, these joins are automatically set up graphically in the editor.

 You can also create a join between tables very easily. Right-click the first table columns to be linked and select **Equal** on the pop-up list, to join it with the relevant field of the second table.
The SQL statement corresponding to your graphical handlings is also displayed on the viewer part of the editor or click the Edit tab to switch back to the manual Edit mode.

Note:
In the Designer view, you cannot include graphically filter criteria. You need to add these in the Edit view.

6. Once your query is complete, execute it by clicking the icon on the toolbar. The toolbar of the query editor allows you to access quickly usual commands such as: execute, open, save and clear. The results of the active query are displayed on the Results view in the lower left corner.

7. If needed, you can select the context mode check box to keep the original query statement and customize it properly in the Query area of the component. For example, if a context parameter is used in the query statement, you cannot execute it by clicking the icon on the toolbar.

8. Click OK. The query statement will be loaded automatically in the Query area of the component.

Storing a query in the repository
To be able to retrieve and reuse queries, we recommend you to store them in the repository.

In the SQL Builder editor, click the icon on the toolbar to bind the query with the DB connection and schema in case these are also stored in the repository.

The query can then be accessed from the Database structure view, on the left-hand side of the editor.

Using the Use Output Stream feature

The Use Output Stream feature allows you to process the data in byte-arrays using a java.io.output stream() class which writes data using binary stream without data buffering. When processing data with a linear format, for example, when all data is of String format, this feature will help you improve the overall output performance.
The **Use Output Stream** feature can be found in the **Basic settings** view of a number of components such as `tFileOutputDelimited`.

To use this feature, select **Use Output Stream** check box in the **Basic settings** view of a component that has this feature. In the **Output Stream** field that is thus enabled, define your output stream using a command.

Note: Prior to using the output stream feature, you have to open a stream. For a detailed example of the illustration of this prerequisite and the usage of the **Use Output Stream** feature, see Using the output stream feature on Talend Help Center (https://help.talend.com).

Handling Jobs: miscellaneous subjects

The sections below give detail information about various subjects related to the management of a data integration Job including:

- **Using folders** on page 86
- **Sharing a database connection** on page 87
- **Adding notes to a Job design** on page 90
- **Displaying the code or the outline of your Job** on page 91
- **Managing the subJob display** on page 92
- **Defining options on the Job view** on page 94

Using folders

About this task

You can organize your Jobs into folders.

To create a folder, proceed as follows:

Procedure

1. In the **Repository** tree view of the **Integration** perspective, right-click **Job Designs** and select **Create folder** from the contextual menu.

 The **New folder** dialog box displays.
2. In the Label field, enter a name for the folder and then click Finish to confirm your changes and close the dialog box.

 The created folder is listed under the Job Designs node in the Repository tree view.

Results

Note:
If you have already created Jobs that you want to move into this new folder, simply drop them into the folder.

Sharing a database connection

About this task
If you have various Jobs using the same database connection, you can factorize the connection by using the Use or register a shared DB Connection option so that the connection can be shared between parent and child Jobs.

This option has been added to all database connection components in order to reduce the number of connections to open and close.

Warning: The Use or register a shared DB Connection option of all database connection components is incompatible with the Use dynamic job and Use an independent process to run subJob options of the tRunJob component. Using a shared database connection together with a tRunJob component with either of these two options enabled will cause your Job to fail.

The procedure below assumes that you have two related Jobs (a parent Job and a child Job) that both need to connect to your remote MySQL database.

For a complete use case, see Sharing a database connection between a parent Job and child Job on Talend Help Center (https://help.talend.com).

To use a shared database connection in the two Jobs, do the following:
Procedure

1. Add a `tMysqlConnection` (assuming that you work with a MySQL database) to both the parent and the child Job, if they are not using a database connection component.

2. Connect each `tMysqlConnection` to the relevant component in your Jobs using a **Trigger > On Subjob Ok** link.

3. In the **Basic settings** view of the `tMysqlConnection` component that will run first, fill in the database connection details if the database connection is not centrally stored in the **Repository**.

4. Select the **Use or register a shared DB Connection** check box, and give a name to the connection in the **Shared DB Connection Name** field.

You are now able to re-use the connection in your child Job.

5. In the **Basic settings** view of the other `tMysqlConnection` component, which is in the other Job, simply select **Use or register a shared DB Connection** check box, and fill the **Shared DB Connection Name** field with the same name as in the parent Job.

Note:

Among the different Jobs sharing the same database connection, you need to define the database connection details only in the first Job that needs to open the database connection.

Handling error icons on components or Jobs

When the properties of a component are not properly defined and contain one or several errors that can prevent the Job code to compile properly, error icons will automatically show next to the component icon on the design workspace and the Job name in the **Repository** tree view.
Warnings and error icons on components

When a component is not properly defined or if the link to the next component does not exist yet, a red checked circle or a warning sign is docked at the component icon.

Mouse over the component, to display the tooltip messages or warnings along with the label. This context-sensitive help informs you about any missing data or component status.

Error icons on Jobs

When the component settings contain one or several errors that can prevent the Job code to compile properly, an icon will automatically show next to the Job name in the Repository tree view.

The error icon displays as well on the tab next to the Job name when you open the Job on the design workspace.

The compilation or code generation does only take place when carrying out one of the following operations:

- opening a Job,
- clicking on the Code Viewer tab,
- executing a Job (clicking on Run Job),
- saving the Job.

Hence, the red error icon will only show then.

When you execute the Job, a warning dialog box opens to list the source and description of any error in the current Job.
Click **Cancel** to stop your Job execution or click **Continue** to continue it.

Adding notes to a Job design

In the **Palette**, click the **Misc** family and then drop the **Note** element to the design workspace to add a text comment to a particular component or to the whole Job.

You can change the note format. To do so, select the note you want to format and click the **Basic setting** tab of the **Component** view.

Select the **Opacity** check box to display the background color. By default, this box is selected when you drop a note on the design workspace. If you clear this box, the background becomes transparent.

You can select options from the **Fonts and Colors** list to change the font style, size, color, and so on as well as the background and border color of your note.

You can select the **Adjust horizontal** and **Adjust vertical** boxes to define the vertical and horizontal alignment of the text of your note.

The content of the **Text** field is the text displayed on your note.
Displaying the code or the outline of your Job

This panel is located below the Repository tree view. It displays detailed information about the open Job or Business Model in the design workspace.

The Information panel is composed of two tabs, Outline and Code Viewer, which provide information regarding the displayed diagram (either Job or Business Model).

Outline

The Outline tab offers a quick view of the business model or the open Job on the design workspace and also a tree view of all used elements in the Job or Business Model. As the design workspace, like any other window area, can be resized to suit your needs, the Outline view provides a convenient way for you to check out where on your design workspace you are located.

This graphical representation of the diagram highlights in a blue rectangle the diagram part showing in the design workspace.

Click the blue-highlighted view and hold down the mouse button. Then, move the rectangle over the Job.

The view in the design workspace moves accordingly.

The Outline view can also be displaying a folder tree view of components in use in the current diagram. Expand the node of a component, to show the list of variables available for this component.

To switch from the graphical outline view to the tree view, click either icon docked at the top right of the panel.
Code viewer

The **Code viewer** tab provides lines of code generated for the selected component, behind the active Job design view, as well the run menu including Start, Body and End elements.

Note:

This view only concerns the Job design code, as no code is generated from Business Models.

Using a graphical colored code view, the tab shows the code of the component selected in the design workspace. This is a partial view of the primary Code tab docked at the bottom of the design workspace, which shows the code generated for the whole Job.

Managing the subJob display

A subJob is graphically defined by a blue square gathering all connected components that belong to this subJob. Each individual component can be considered as a subJob when they are not yet connected to one another.

![Diagram of subJobs](image)

This blue highlight helps you easily distinguish one subJob from another.

Note: A Job can be made of one single subJob. An orange square shows the prejob and postjob parts which are different types of subJobs. For more information about prejob and postjob, see Using the tPrejob and tPostjob components on page 52.

Formatting subJobs

About this task

You can modify the subJob color and its title color. To do so, select your subJob and click the **Component** view.

![Component view](image)

In the **Basic setting** view, select the **Show subJob title** check box if you want to add a title to your subJob, then fill in a title.

To modify the title color and the subJob color:
Procedure

1. In the Basic settings view, click the Title color/subJob color button to display the Colors dialog box.

2. Set your colors as desired. By default, the title color is blue and the subJob color is transparent blue.

Collapsing the subJobs

If your Job is made of numerous subjobs, you can collapse them to improve the readability of the whole Job. The minus (-) and plus (+) signs on the top right-hand corner of the subjob allow you to collapse and restore the complete subJob.

Click the minus sign (-) to collapse the subjob. When reduced, only the first component of the subjob is displayed.

Click the plus sign (+) to restore your subjob.

Removing the subJob background color

If you do not want your subjobs to be highlighted, you can remove the background color on all or specific subjobs.

To remove the background color of all your subjobs, click the Toggle subJobs icon on the toolbar of Talend Studio.

To remove the background color of a specific subjob, right-click the subjob and select the Hide subJob option on the pop-up menu.
Defining options on the Job view

On the Job view located on the bottom part of the design workspace, you can define Job’s optional functions. This view is made of two tabs: Stats & Logs tab and Extra tab.

The Stats & Logs tab allows you to automate the use of Stats & Logs features and the Context loading feature. For more information, see Automating the use of statistics & logs on page 94.

The Extra tab lists various options you can set to automate some features such as the context parameters use, in the Implicit Context Loading area. For more information, see Using the features in the Extra tab on page 95.

Automating the use of statistics & logs

About this task

If you have a great need of log, statistics and other measurement of your data flows, you are facing the issue of having too many log-related components loading your Job Designs. You can automate the use of tFlowMeterCatcher, tStatCatcher, tLogCatcher component functionalities without using the components in your Job via the Stats & Logs tab.

The Stats & Logs panel is located on the Job tab underneath the design workspace and prevents your Jobs Designs to be overloaded by components.

Note:
This setting supersedes the log-related components with a general log configuration.

To set the Stats & Logs properties:

Procedure

1. Click the Job tab.
2. Select the Stats & Logs panel to display the configuration view.
3. Set the relevant details depending on the output you prefer (console, file or database).
4. Select the relevant **Catch** check box according to your needs.

Results

Note:

You can save the settings into your Project Settings by clicking the [Save to project settings] button. This way, you can access such settings via File > Edit project settings > Job settings > Stats & Logs or via the [] button on the toolbar.

When you use **Stats & Logs** functions in your Job, you can apply them to all its subJobs.

To do so, click the **Apply to subJobs** button in the **Stats & Logs** panel of the **Job** view and the selected stats & logs functions of the main Job will be selected for all of its subjobs.

Using the features in the Extra tab

The **Extra** tab offers some optional function parameters.

- Select the **Multithread execution** check box to allow two Job executions to start at the same time.
• Set the **Implicit tContextLoad** option parameters to avoid using the **tContextLoad** component on your Job and automate the use of context parameters.

Choose between **File** and **Database** as source of your context parameters and set manually the file or database access.

Set notifications (error/warning/info) for unexpected behaviors linked to context parameter setting.

For an example of loading context parameters dynamically using the Implicit Context Load feature, see Talend Help Center (https://help.talend.com).

• When you fill in **Implicit tContextLoad** manually, you can store these parameters in your project by clicking the **Save to project settings** button, and thus reuse these parameters for other components in different Jobs.

• Select the **Use Project Settings** check box to recuperate the context parameters you have already defined in the **Project Settings** view.

The **Implicit tContextLoad** option becomes available and all fields are filled in automatically.

For more information about context parameters, see **Context settings** on page 468.

• Click **Reload from project settings** to update the context parameters list with the latest context parameters from the project settings.

Managing Jobs

Activating/Deactivating a component or a subJob

You can activate or deactivate a subJob directly connected to the selected component. You can also activate or deactivate a single component as well as all the subJobs linked to a Start component. The Start component is the trigger of the Job. It has a green background.

When a component or a subJob is deactivated, you are not able to create or modify links from or to it. Moreover, at runtime, no code is generated for the deactivated component or subJob.
Activate or deactivate a component

About this task
To activate or deactivate a component, proceed as follows:

Procedure
1. Right-click the component you want to activate or deactivate, the tFixedFlowInput component for example.
2. Select the option corresponding to the action you want to perform:
 - Activate tFixedFlowInput_1 if you want to activate it.
 - Deactivate tFixedFlowInput_1 if you want to deactivate it.

Activate or deactivate a subJob

About this task
To activate or deactivate a subJob, proceed as follows:

Procedure
1. Right-click any component composing the subJob.
2. Select the option corresponding to the action you want to perform:
 - Activate current subJob if you want to activate it.
 - Deactivate current subJob if you want to deactivate it.

Activate or deactivate all linked subJobs

About this task
To activate or deactivate all linked subJobs, proceed as follows:

Procedure
1. Right-click the Start component.
2. Select the option corresponding to the action you want to perform:
 - Activate all linked subJobs if you want to activate them.
 - Deactivate all linked subJobs if you want to deactivate them.

Importing/exporting items and building Jobs

Talend Studio enables you to import/export your Jobs or items in your Jobs from/to various projects or various versions of the Studio. It enables you as well to build Jobs and thus deploy and execute those created in the Studio on any server.

Importing items

You can import items from previous versions of Talend Studio or from a different project of your current version.

The items you can possibly import are multiple:
 - Business Models
- Jobs Designs
- Routines
- Documentation
- Metadata

To import items, right-click any entry such as **Job Designs** or **Business Models** in the Repository tree view and select **Import Items** from the contextual menu or directly click the icon on the toolbar to open the **Import items** dialog box and then select an import option.

To import items stored in a local directory, do the following:

1. Click the **Select root directory** option in the **Import items** dialog box.
2. Click **Browse** to browse down to the relevant project folder within the workspace directory. It should correspond to the project name you picked up.
3. If you only want to import very specific items such as some **Job Designs**, you can select the specific folder, such as Process where all the Job Designs for the project are stored. If you only have **Business Models** to import, select the specific folder: **BusinessProcess**, and click **OK**.

But if your project gathers various types of items (Business Models, Jobs Designs, Metadata, Routines...), we recommend you to select the project folder to import all items in one go, and click **OK**.

4. If needed, select the **overwrite existing items** check box to overwrite existing items with those having the same names to be imported. This will refresh the **Items List**.

5. From the **Items List** which displays all valid items that can be imported, select the items that you want to import by selecting the corresponding check boxes.

6. Click **Finish** to validate the import.

To import items from an archive file (including source files and scripts), do the following:

1. Click the **Select archive file** option in the **Import items** dialog box.
2. Browse to the desired archive file and click **Open**.
3. If needed, select the **overwrite existing items** check box to overwrite existing items with those having the same names to be imported. This will refresh the **Items List**.
4. From the **Items List** which displays all valid items that can be imported, select the items that you want to import by selecting the corresponding check boxes.
5. Click **Finish** to validate the import.

To import items from **Talend Exchange**, do the following:

1. Click the **Select archive file** option in the **Import items** dialog box. Then, click **BrowseTalendExchange** to open the **Select an item from Talend Exchange** dialog box.
2. Select the desired category from the **Category** list, and select the desired version from the **TOS_VERSION_FILTER** list.

A progress bar appears to indicate that the extensions are being downloaded. At last, the extensions for the selected category and version will be shown in the dialog box.

![Select an item from Talend Exchange](image)

3. Select the extension that you want to import from the list.

 Click **Finish** to close the dialog box.

4. If needed, select the **overwrite existing items** check box to overwrite existing items with those having the same names to be imported. This will refresh the **Items List**.

5. From the **Items List** which displays all valid items that can be imported, select the items that you want to import by selecting the corresponding check boxes.

6. Click **Finish** to validate the import.

Note: If there are several versions of the same items, they will all be imported into the Project you are running, unless you already have identical items.

Building Jobs

The **Build Job** feature allows you to deploy and execute a Job on any server, independent of Talend Studio.
About this task

By executing build scripts generated from the templates defined in Project Settings, the Build Job feature adds all of the files required to execute the Job to an archive, including the .bat and .sh along with any context-parameter files or other related files.

Note: Your Talend Studio provides a set of default build script templates. You can customize those templates to meet your actual needs. For more information, see Customizing shell command templates on page 455 and Customizing Maven build script templates on page 456.

By default, when a Job is built, all the required jars are included in the .bat or .sh command. For a complex Job that involves many Jars, the number of characters in the batch command may exceed the limitation of command length on certain operating systems. To avoid failure of running the batch command due to this limitation, before building your Job, go to Window > Preferences > Talend > Import/Export and then select the Add classpath jar in exported jobs check box to wrap the Jars in a classpath.jar file added to the built Job.

Procedure

1. In the Repository tree view, right-click the Job you want to build, and select Build Job to open the Build Job dialog box.

Note: You can show/hide a tree view of all created Jobs in Talend Studio directly from the Build Job dialog box by clicking the ➔ and the ◀ buttons respectively. The Jobs you earlier selected in the Studio tree view display with selected check boxes. This accessibility helps to modify the selected items to be exported directly from the dialog box without having to close it and go back to the Repository tree view in Talend Studio to do that.

2. In the To archive file field, browse to the directory where you want to save your built Job.
3. From the **Select the Job version** area, select the version number of the Job you want to build if you have created more than one version of the Job.

4. Select the **Build Type** from the list between **Standalone Job** and **OSGI Bundle For ESB**.
 If the data service Job includes the `tRESTClient` or `tESBConsumer` component, and none of the Service Registry, Service Locator or Service Activity Monitor is enabled in the component, the data service Job can be built as **OSGI Bundle For ESB** or **Standalone Job**. With the Service Registry, Service Locator or Service Activity Monitor enabled, the data service Job including the `tRESTClient` or `tESBConsumer` component can only be built as **OSGI Bundle For ESB**.

5. Select the **Extract the zip file** check box if you want the archive file to be automatically extracted in the target directory.

6. In the **Options** area, select the file type(s) you want to add to the archive file. The check boxes corresponding to the file types necessary for the execution of the Job are selected by default. You can clear these check boxes depending on what you want to build.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Shell launcher** | Select this check box to export the `.bat` and/or `.sh` files necessary to launch the built Job.
 • **All**: exports the `.bat` and `.sh` files.
 • **Unix** exports the `.sh` file.
 • **Windows** exports the `.bat` file. |
| **Context scripts** | Select this check box to export ALL context parameters files and not just those you select in the corresponding list.
 Note: To export only one context, select the context that fits your needs from the **Context scripts** list, including the `.bat` or `.sh` files holding the appropriate context parameters. Then you can, if you wish, edit the `.bat` and `.sh` files to manually modify the context type. |
| **Apply to children** | Select this check box if you want to apply the context selected from the list to all child Jobs. |
| **Items** | Select this check box to export the sources used by the Job during its execution including the `.item` and `.properties` files, Java and Talend sources.
 Note: If you select the **Items** or **Source files** check box, you can reuse the built Job in a Talend Studio installed on another machine. These source files are only used in Talend Studio. |
| **Java sources** | Select this check box to export the `.java` file holding Java classes generated by the Job when designing it. |

7. Click the **Override parameters’ values** button, if necessary.
 In the window which opens you can update, add or remove context parameters and values of the Job context you selected in the list.

8. Click **Finish** to validate your changes, complete the build operation and close the dialog box.

Results

A zipped file for the Jobs is created in the defined place.
Building a Job as a standalone Job

In the case of a Plain Old Java Object export, if you want to reuse the Job in Talend Studio installed on another machine, make sure you selected the **Items** check box. These source files (.item and .properties) are only needed within Talend Studio.

Select a context from the list when offered. Then once you click the **Override parameters’ values** button below the **Context scripts** check box, the opened window will list all of the parameters of the selected context. In this window, you can configure the selected context as needed.

All contexts parameter files are exported along in addition to the one selected in the list.

Note:

After being exported, the context selection information is stored in the .bat or .sh file and the context settings are stored in the context .properties file.

Building a Job as an OSGI Bundle For ESB

About this task

In the **Build Job** dialog box, you can change the build type in order to build the Job selection as an OSGI Bundle in order to deploy your Job in **Talend ESB Container**.
Procedure

1. In the **Job Version** area, select the version number of the Job you want to build if you have created more than one version of the Job.

2. In the **Build type** area, select **OSGI Bundle For ESB** to build your Job as an OSGI Bundle. The extension of your build automatically change to `.jar` as it is what **Talend ESB Container** is expecting.

3. Click the **Browse...** button to specify the folder in which building your Job.

4. Click **Finish** to build it.

Exporting items

About this task
You can export multiple items from the repository onto a directory or an archive file. Hence you have the possibility to export metadata information such as DB connection or Documentation along with your Job or your Business Model, for example. To do so:

Procedure

1. In the **Repository** tree view, select the items you want to export.

2. To select several items at a time, press the **Ctrl** key and select the relevant items.
Warning: If you want to export a database table metadata entry, make sure you select the whole DB connection, and not only the relevant table as this will prevent the export process to complete correctly.

3. Right-click while maintaining the Ctrl key down and select Export items on the pop-up menu:
You can select additional items on the tree for exportation if required.

4. Click **Browse** to browse to where you want to store the exported items. Alternatively, define the archive file where to compress the files for all selected items.

 Note: If you have several versions of the same item, they will all be exported.

 Select the **Export Dependencies** check box if you want to set and export routine dependencies along with Jobs you are exporting. By default, all of the user routines are selected. For further information about routines, see What are routines on page 430.

5. Click **Finish** to close the dialog box and export the items.

Changing context parameters in Jobs

About this task

As explained in Building Jobs on page 100, you can edit the context parameters:

Procedure

- If you want to change the context selection, simply edit the `.bat`/`.sh` file and change the following setting: `--context=Prod` to the relevant context.
• If you want to change individual parameters in the context selection, edit the .bat/.sh file and add
the following setting according to your need:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>To change value1 for parameter key1</td>
<td>--context_param key1=value1</td>
</tr>
<tr>
<td>To change value1 and value2 for respective parameters key1 and key2</td>
<td>--context_param key1=value1 --context_param key2=value2</td>
</tr>
<tr>
<td>To change a value containing space characters such as in a file path</td>
<td>--context_param key1="path to file"</td>
</tr>
</tbody>
</table>

Managing repository items

Talend Studio enables you to edit the items centralized in the repository and to update the Jobs that use these items accordingly.

Handling updates in repository items

You can update the metadata, context parameters that are centralized in the Repository tree view any time in order to update the database connection or the context group details, for example.

When you modify any of the parameters of an entry in the Repository tree view, all Jobs using this repository entry will be impacted by the modification. This is why the system will prompt you to propagate these modifications to all the Jobs that use the repository entry.

The Update Detection dialog box is displayed to let you update the impacted Jobs when:

• you modify a centralized repository entry that is used in any Jobs and click Yes in the Modification
dialog box that is display automatically.
• you select Detect Dependencies from the right-click menu of a modified repository entry that is
used in any Jobs, or click the icon on the toolbar after modifying a centralized repository entry
that is used in any Jobs.

For more information on updating impacted Jobs, see Updating impacted Jobs automatically on page 108 and Updating impacted Jobs manually on page 109.

The following sections explain how to modify the parameters of a repository entry and how to
propagate the modifications to all or some of the Jobs that use the entry in question.

Modifying a repository item

About this task

To update the parameters of a repository item, complete the following:

Procedure

1. Expand the Metadata, or Contexts node in the Repository tree view and browse to the relevant
entry that you need to update.
2. Right-click this entry and select the corresponding edit option in the contextual menu.
 A respective wizard displays where you can edit each of the definition steps for the entry parameters.
When updating the entry parameters, you need to propagate the changes throughout numerous Jobs or all your Jobs that use this entry.

A prompt message pops up automatically at the end of your update/modification process when you click the **Finish** button in the wizard.

3. Click **Yes** to close the message and implement the changes throughout all Jobs impacted by these changes. For more information about the first way of propagating all your changes, see **Updating impacted Jobs automatically** on page 108.

 Click **No** if you want to close the message without propagating the changes. This will allow you to propagate your changes on the impacted Jobs manually on one by one basis. For more information on another way of propagating changes, see **Updating impacted Jobs manually** on page 109.

Updating impacted Jobs automatically

About this task

After you update the parameters of any item already centralized in the **Repository** tree view and used in different Jobs, a message will prompt you to propagate the modifications you did to all Jobs that use these parameters.

To update impacted Jobs, complete the following:

Procedure

1. In the **Modification** dialog box, click **Yes** to let the system scan your **Repository** tree view for the Jobs that get impacted by the changes you just made.

 This aims to automatically propagate the update throughout all your Jobs (open or not) in one click.

 The **Update Detection** dialog box displays to list all Jobs impacted by the parameters that are modified.
2. Select the check boxes corresponding to the Jobs you want to update and clear those corresponding to the Jobs you do not want to update.

You can update them any time later through the Detect Dependencies menu or the icon on the toolbar. For more information, see Updating impacted Jobs manually on page 109.

3. Click OK to close the dialog box and update all selected Jobs.

Updating impacted Jobs manually

About this task

Before propagating changes in the parameters of an item centralized in the tree view throughout the Jobs using this entry, you might want to view all Jobs that are impacted by the changes. To do that, complete the following:

Procedure

1. In the Repository tree view, expand the node holding the entry you want to check what Jobs use it.
2. Right-click the entry and select Detect Dependencies.

A progress bar indicates the process of checking for all Jobs that use the modified metadata or context parameter. Then a dialog box displays to list all Jobs that use the modified item.
3. Select the check boxes corresponding to the Jobs you want to update with the modified metadata or context parameter and clear those corresponding to the Jobs you do not want to update.

4. Click **OK** to validate and close the dialog box.

Results

Note: The Jobs that you choose not to update will be switched back to **Built-in**, as the link to the Repository cannot be maintained. It will thus keep their setting as it was before the change.

Searching a Job in the repository

About this task

If you want to open a specific Job in the **Repository** tree view of the current **Integration** perspective of Talend Studio and you can not find it for one reason or another, you can simply click on the quick access toolbar.

To find a Job in the **Repository** tree view, complete the following:

Procedure

1. On Talend Studio toolbar, click to open the **Find a Job** dialog box that lists automatically all the Jobs you created in the current Studio.
2. Enter the Job name or part of the Job name in the upper field. When you start typing your text in the field, the Job list is updated automatically to display only the Job(s) which name(s) match(es) the letters you typed in.
3. Select the desired Job from the list and click Link Repository to automatically browse to the selected Job in the Repository tree view.

4. If needed, click Cancel to close the dialog box and then right-click the selected Job in the Repository tree view to perform any of the available operations in the contextual menu. Otherwise, click OK to close the dialog box and open the selected Job on the design workspace.

Managing Job versions

When you create a Job in Talend Studio, by default its version is 0.1, where 0 stands for the major version and 1 for the minor version.

The following sections describe how to manage the version of a Job.

You can also manage the version of several Jobs and/or metadata at the same time, as well as Jobs and their dependencies and/or child Jobs from the Project Settings. For more information, see Version management on page 463.

Updating the version of an inactive Job

Procedure

1. Close your Job if it is open on the design workspace. Otherwise, its properties will be read-only and thus you cannot modify them.

2. In the Repository tree view, right-click your Job and:
• select **Edit properties** from the drop-down list to open the **Edit properties** dialog box, and click the **M** button next to the **Version** field to increment the major version or the **m** button to increment the minor version.

• select **Open another version** from the drop-down list, then in the dialog box select the **Create new version and open** check box and click the **M** button to increment the major version or the **m** button to increment the minor version.

3. Click **Finish** to validate the modification.

Results
You have created a new version for the Job.

Note: By default, when you open a Job, you open its last version. Any previous version of the Job is read-only and thus cannot be modified.

Updating the version of an active Job
You can also save your currently active Job and increment its version at the same time.

Procedure
1. Click **File > Save As...**.
2. In the **Save As** dialog box, set a new version and click **Finish**.

Note: If you give your Job a new name, this option does not overwrite your current Job, but it saves your Job as a new one with the same version of the current Job or with a new version if you specify one.

Working on different versions of a Job
You can access a list of the different versions of a Job and perform certain operations.

Procedure
1. In the **Repository** tree view, select the Job you want to consult the versions of.
2. On the configuration tabs panel, click the **Job** tab and then click **Version** to display the version list of the selected Job.
3. Right-click the Job version you want to work on.
4. Select an option:

<table>
<thead>
<tr>
<th>Select</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Job</td>
<td>open the last version of the Job.</td>
</tr>
<tr>
<td>Note:</td>
<td>This option is available only when you select the last version of the Job.</td>
</tr>
<tr>
<td>Read job</td>
<td>consult the Job in read-only mode.</td>
</tr>
<tr>
<td>Open Job Hierarchy</td>
<td>consult the hierarchy of the Job.</td>
</tr>
</tbody>
</table>
Data Integration

<table>
<thead>
<tr>
<th>Select</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>Edit properties</td>
</tr>
<tr>
<td></td>
<td>edit Job properties.</td>
</tr>
<tr>
<td></td>
<td>Note: The Job should not be open on the design workspace, otherwise it will be in read-only mode.</td>
</tr>
<tr>
<td></td>
<td>Note: This option is available only when you select the last version of the Job.</td>
</tr>
<tr>
<td>Run job</td>
<td>execute the Job.</td>
</tr>
<tr>
<td>Generate Doc As HTML</td>
<td>generate details documentation about the Job.</td>
</tr>
</tbody>
</table>

Removing a version of a Job

If you are sure that a version of a Job is no longer useful, you can remove it by deleting its resource files.

Warning:

- A Job removed this way will not go to the Recycle bin and therefore cannot be restored.
- Mis-deletion of a resource file may cause damage to the integrity of the corresponding Job and thus cause it to stop functioning.

Procedure

1. If you want to remove the latest version of a Job and if it is currently open, close it.
2. Select Window > Show view... from the menu, then in the the Show View dialog box, select General > Navigator and click OK to open the Navigator view in the configuration tabs area.
 Skip this step if the Navigator view is already displayed.
3. In the Navigator view, expand to the node named after your project.
 This node is in all capitals, MY_PROJECT for example.
4. Go to the process folder to show the resource files of your Job.
 If your Job is in a sub folder, go to that sub folder to show the corresponding resource files.
5. Select the three resource files corresponding to your Job name and the version you want to delete, right-click the selection and click Delete on the context menu, and then click OK in the Delete Resources dialog box.

Example

To delete the 0.1 version of a Job named my_job, delete these files:

- my_job_0.1.item
- my_job_0.1.properties
- my_job_0.1.screenshot

Documenting a Job

Talend Studio enables you to generate documentation that gives general information about your projects, Jobs or joblets. You can automate the generation of such documentation and edit any of the generated documents.
Generating HTML documentation

Talend Studio allows you to generate detailed documentation in HTML of the Job(s) you select in the Repository tree view of your Studio in the Integration perspective. This auto-documentation offers the following:

- The properties of the project where the selected Jobs have been created,
- The properties and settings of the selected Jobs along with preview pictures of each of the Jobs,
- The list of all the components used in each of the selected Jobs and component parameters.

To generate an HTML document for a Job, complete the following:

Procedure

1. In the Repository tree view, right-click a Job entry or select several items to produce multiple documentations.
2. Select Generate Doc as HTML on the contextual menu.

3. Browse to the location where the generated documentation archive should be stored.
4. In the same field, type in a name for the archive gathering all generated documents.
5. Select the Use CSS file as a template to export check box to activate the CSS File field if you need to use a CSS file.
6. In the CSS File field, browse to, or enter the path to the CSS file to be used.
7. Click Finish to validate the generation operation.

Results

The archive file is generated in the defined path. It contains all required files along with the Html output file. You can open the HTML file in your favorite browser.
Updating the documentation on the spot

You can choose to manually update your documentation on the spot.

Procedure

• To update a single document, right-click the relevant documentation entry and select Update documentation.

Comparing Jobs

Talend Studio provides a Compare Job option that enables you to compare Jobs on the same or different branches in order to list the differences in the items used in the two Jobs. Using this option, you can:

• compare different versions of the same Job,
• compare the same Job in different releases of the Studio, in order to see if any modifications were done on the Job in the previous/current release, for example,
• compare Jobs that have been designed using the same template, but different parameters, to check the differences among these Jobs.

Differences between the compared Jobs are displayed in the Compare Result view. The result detail are grouped under the three categories: Jobsettings, Components and Connectors.

The table below gives the description of the comparison results under each of the above categories.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobsettings</td>
<td>lists all differences related to the settings of the compared Job.</td>
</tr>
<tr>
<td>Components</td>
<td>lists the differences in the components and component parameter used in the two Jobs. A minus sign appended on top of a component listed in the Compare Result view indicates that this component is missing in the design of one of the two compared Jobs. A plus sign appended on top of a component listed in the view indicates that this component is added in one of the two compared Jobs. All differences in the component parameters will be listed in tables that display under the corresponding component.</td>
</tr>
<tr>
<td>Connectors</td>
<td>lists differences in all the links used to connect components in the two Jobs.</td>
</tr>
</tbody>
</table>

The procedure to compare two Jobs or two different versions of the same Job are the same.

To compare two different versions of the same Job, complete the following:
Procedure

1. In the Repository tree view, right-click the Job version you want to compare with another version of the same Job and then select Compare Job from the contextual menu.

![Repository tree view showing Compare Job option]

The Compare Result view displays in the Studio workspace. The selected Job name and version show, by default, in the corresponding fields.

![Compare Result view in Studio workspace]

2. If the other version of the Job with which you want to compare the current version is on another branch, select the branch from the Another Branch list.

3. Click the three-dot button next to the Another job field to open the Select a Job/Joblet dialog box.

![Select a Job/Joblet dialog box]
4. In the **Name Filter** field, type in the name of the Job or Joblet you want to use for this comparison. The dialog box returns you this Job or Joblet you are searching for.

5. Select the returned Job or Joblet from the list in the dialog box and click **OK**.

6. From the **Current version** and **Another version** lists select the Job versions you want to compare.

7. Click the button to launch the compare operation.

The two indicated versions of the Job display in the design workspace.

The differences between the two versions are listed in the **Compare Result** view.

Results

In this example, differences between the two Job versions are related to components and links (connectors). The figure below shows the differences in the components used in the two versions.
For example, there is one difference in the output schemas used in the tMap and tFileOutputXML components: the length of the Revenue column is 15 in the second version of the Job while the length is 11 in the first version of the same Job. The minus sign appended on top of tMysqlOutput indicates that this component is missing in the design of one of the two compared Jobs. The plus sign appended on top of tOracleOutput indicates that this component is added in one of the two compared Jobs.

Note: If you click any of the components listed in the Compare Result view, the component will be automatically selected, and thus identified, in the open Job in the design workspace.

The figure below shows the differences in the links used to link the components in the two versions of the same Job.
In this example, there is one difference related to the reject link used in the two versions: the target of this link in the first version is a tMysqlOutput component, while it is a tOracleOutput component in the second version.

Note: You can export the Job compare results to an html file by clicking Export to html. Then browse to the directory you want to save the file in and enter a file name. You have the option of using a default CSS template or a customized one. The destination folder will contain the html file, a css file, an xml file and a pictures folder. For related topic, see Exporting the results of impact analysis/data lineage to HTML.

Running Jobs

You can execute a Job in several ways. This mainly depends on the purpose of your Job execution and on your user level.

This section describes:

- Running a Job in normal mode on page 120
- Running a Job in Java Debug mode on page 121
- Running a Job in Traces Debug mode on page 122
- Setting advanced execution settings on page 124
- Showing JVM resource usage during Job execution on page 126
- Deploying a Job on SpagoBI server (deprecated) on page 127

For how to run a Job on a remote Hadoop server via Oozie scheduler, see Running a Job via Oozie on page 190.

Running a Job in normal mode

Note:
Make sure you saved your Job before running it in order for all properties to be taken into account.

To run your Job in a normal mode, do the following:

1. Click the Run view to access it.
2. Click the Basic Run tab to access the normal execution mode.
3. In the **Context** area to the right of the view, select in the list the proper context for the Job to be executed in. You can also check the variable values.

If you have not defined any particular execution context, the context parameter table is empty and the context is the default one. Related topic: Using contexts and variables on page 66.

1. **Click Run** to start the execution.

2. On the same view, the console displays the progress of the execution. The log includes any error message as well as start and end messages.

3. To define the lines of the execution progress to be displayed in the console, select the **Line limit** check box and type in a value in the field.

4. Select the **Wrap** check box to wrap the text to fit the console width. This check box is selected by default. When it is cleared, a horizontal scrollbar appears, allowing you to view the end of the lines.

Before running again a Job, you might want to remove the execution statistics and traces from the designing workspace. To do so, click the **Clear** button.

If for any reason, you want to stop the Job in progress, simply click the **Kill** button. You will need to click the **Run** button again, to start again the Job.

Talend Studio offers various informative features displayed during execution, such as statistics and traces, facilitating the Job monitoring and debugging work. For more information, see the following sections.

Running a Job in Java Debug mode

About this task

To follow step by step the execution of a Job to identify possible bugs, you can run it in Debug mode. Before running your Job in Debug mode, you can add breakpoints to the major steps of your Job flow. This will allow you to get the Job to automatically stop at each breakpoint. This way, components and their respective variables can be verified individually and debugged if required.

To add breakpoints to a component, right-click it on the design workspace, and select **Add breakpoint** on the contextual menu.

A pause icon displays next to the component where the break is added.
To access the Debug mode:

Procedure

1. Click the **Run** view to access it.
2. Click the **Debug Run** tab to access the debug execution modes.

 To switch to debug mode, click the **Java Debug** button on the **Debug Run** tab of the Run panel. Talend Studio’s main window gets reorganized for debugging.

Results

You can then run the Job step by step and, if you have added breakpoints, check each breakpoint component for the expected behavior and variable values.

Running a Job in Traces Debug mode

The traces feature allows you to monitor data processing when running a Job in the Integration perspective of Talend Studio.

It provides a row by row view of the component behavior and displays the dynamic result next to the Row link on the design workspace.

This feature allows you to monitor all the components of a Job, without switching to the debug mode, hence without requiring advanced Java knowledge.

The Traces function displays the content of processed rows in a table.

Note:

Exception is made for external components which cannot offer this feature if their design does not include it.

You can activate or deactivate Traces or decide what processed columns to display in the traces table that displays on the design workspace when launching the current Job.

To activate the Traces mode in a Job:
1. Click the Run view.
2. Click the Debug Run tab to access the debug and traces execution modes.
3. Click the down arrow of the Java Debug button and select the Traces Debug option. An icon displays under every flow of your Job to indicate that process monitoring is activated.
4. Click the Traces Debug to execute the Job in Traces mode.

To deactivate the Traces on one of the flows in your Job:

1. Right-click the Traces icon under the relevant flow.
2. Select Disable Traces from the list. A red minus sign replaces the green plus sign on the icon to indicate that the Traces mode has been deactivated for this flow.

To choose which columns of the processed data to display in the traces table, do the following:

1. Right-click the Traces icon for the relevant flow, then select Setup Traces from the list. The Setup Traces dialog box appears.

2. In the dialog box, clear the check boxes corresponding to the columns you do not want to display in the Traces table.
3. Click OK to close the dialog box.
Monitoring data processing starts when you execute the Job and stops at the end of the execution.

To remove the displayed monitoring information, click the **Clear** button in the **Debug Run** tab.

Setting advanced execution settings

In the **Advanced settings** tab of the **Run** view, several advanced execution settings are available to make the execution of the Jobs handier:

- **Statistics**, this feature displays processing performance rate. For more information, see Displaying Statistics on page 124.
- **Exec time**, this feature displays the execution time in the console at the end of the execution. For more information, see Displaying the execution time and other options on page 125.
- **Save Job before execution**, this feature allows to automatically save the Job before its execution.
- **Clear before run**, this feature clears all the results of a previous execution before re-executing the Job.
- **JVM Setting**, this feature allows you to define the parameters of your JVM according to your needs. For an example of how this can be used, see Displaying special characters in the console on page 125.

Displaying Statistics

The **Statistics** feature displays each component performance rate, under the flow links on the design workspace.

It shows the number of rows processed and the processing time in row per second, allowing you to spot straight away any bottleneck in the data processing flow.

For trigger links like **OnComponentOK**, **OnComponentError**, **OnSubjobOK**, **OnSubjobError** and **If**, the **Statistics** option displays the state of this trigger during the execution time of your Job: Ok or Error and True or False.

Note: Exception is made for external components which cannot offer this feature if their design does not include it.

Procedure

- In the **Run** view, click the **Advanced settings** tab and select the **Statistics** check box to activate the Stats feature and clear the box to disable it.

 The calculation only starts when the Job execution is launched, and stops at the end of it.
Note: The statistics thread slows down Job execution as the Job must send these stats data to the design workspace in order to be displayed.

- Click the **Clear** button from the **Basic** or **Debug Run** views to remove the calculated stats displayed.
- Select the **Clear before Run** check box to reset the Stats feature before each execution.

Displaying the execution time and other options

Procedure

- To display the total execution time, select in the **Advanced settings** tab of the **Run** view the **Exec time** check box before running the Job.

 This way you can test your Job before going to production.
- To clear the design workspace before each Job execution, select the check box **Clear before Run**.
- To save your Job before the execution starts, select the relevant option check box.

Displaying special characters in the console

About this task

Talend Studio can display special characters in the console. To enable the display of Chinese, Japanese or Korean characters, for example, proceed as follows before executing the Job:

1. Select the **Advanced settings** tab.
2. In the **JVM settings** area of the tab view, select the **Use specific JVM arguments** check box to activate the **Argument** table.
3. Next to the **Argument** table, click the **New...** button to pop up the **Set the VM argument** dialog box.
4. In the dialog box, type in `-Dfile.encoding=UTF-8`.

5. Click OK to close the dialog box.

 This argument can be applied for all of your Job executions in Talend Studio. For further information about how to apply this JVM argument for all of the Job executions, see Debug and Job execution preferences (Talend > Run/Debug) on page 496.

Customizing log4j output level at runtime

About this task

When activated in components, the Apache logging utility log4j outputs component-related logging information at runtime. By default, all logging messages of or higher than the level defined in the log4j configuration will be output to the defined target.

You can change the logging output level for an execution of your Job. To do so, take the following steps:

Procedure

1. In the Run view, click the Advanced settings tab.

2. Select the log4jLevel check box, and select the desired output level from the drop-down list.

 This check box is displayed only when log4j is activated in components.

 For more information on the logging output levels, see Apache documentation at http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html.

3. Run your Job.

Results

All the logging messages of and higher than the level you set are output to the defined target.

For information on how to activate log4j in components and how to configure the logging behaviors globally, see Configuring Log4j on page 469.

For more information regarding the components with which you can use the log4j feature, see List of components that support the Log4j feature on Talend Help Center (https://help.talend.com).

Showing JVM resource usage during Job execution

About this task

The Memory Run vertical tab of the Run view of your Talend Studio allows you to monitor real-time JVM resource usage during Job execution, including memory consumption and host CPU usage, so that you can take appropriate actions when the resource usage is too high and results in low performance of your Talend Studio, such as increasing the memory allocated to the JVM, stopping unnecessary Jobs, and so on.

To monitor JVM resource usage at Job execution, do the following:

Procedure

1. Open your Job.

 In the Run view, click the Memory Run tab.

2. Click Run to run the Job.
You can click Run on the Memory Run tab to monitor the JVM resource usage by your Job at any
time even after you launch your Job from the Basic Run tab.
The Studio console displays curve graphs showing the JVM heap usage and CPU usage
respectively during the Job execution. Warning messages are shown in red on the Job execution
information area when the relevant thresholds are reached.

3. To view the information about resources used at a certain point of time during the Job execution,
move the mouse onto that point of time on the relevant graph. Depending on the graph on which
you move your mouse pointer, you can see the information about allocated heap size, the 90%
heap threshold, and the 70% heap threshold, or the CPU usage, at the point of time.

4. To run the Garbage Collector at a particular interval, select the With Garbage Collector pace set
to check box and select an interval in seconds. The Garbage Collector automatically runs at the
specified interval.
To run the Garbage Collector once immediately, click the Trigger GC button.

5. To export the log information into a text file, click the Export button and select a file to save the
log.

6. To stop the Job, click the Kill button.

Deploying a Job on SpagoBI server (deprecated)

This feature is deprecated from Talend 7.1 onwards.
From Talend Studio interface, you can deploy your Jobs easily on a SpagoBI server in order to execute
them from your SpagoBI administrator.

Creating a SpagoBI server entry

About this task

Beforehand, you need to set up your single or multiple SpagoBI server details in Talend Studio.

Procedure

1. On the menu bar, click Window > Preferences to open the Preferences dialog box.
2. Expand the Talend > Import/Export nodes in succession and select SpagoBI Server (Deprecated)
to display the relevant view.
3. Select the **Enable/Disable Deploy on SpagoBI** check box to activate the deployment operation.

4. Click **New** to open the **Create new SpagoBI server** dialog box and add a new server to the list.

5. Enter your SpagoBI server details, as described below:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Name</td>
<td>Internal engine name used in Talend Studio. This name is not used in the generated code.</td>
</tr>
<tr>
<td>Short description</td>
<td>Free text to describe the server entry you are recording.</td>
</tr>
<tr>
<td>Host</td>
<td>IP address or host name of the machine running the SpagoBI server.</td>
</tr>
<tr>
<td>Login</td>
<td>User name required to log on to the SpagoBI server.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for SpagoBI server logon authentication.</td>
</tr>
</tbody>
</table>

6. Click **OK** to validate the details of the new server entry and close the dialog box.
The newly created entry is added to the table of available servers. You can add as many SpagoBI entries as you need.

7. Click **Apply** and then **OK** to close the Preferences dialog box.

Editing or remove a SpagoBI server entry

Procedure

1. Select the relevant entry in the table, click the **Remove** button next to the table to first delete the outdated entry.
2. Then if required, simply create a new entry including the updated details.

Deploying your Jobs on a SpagoBI server

About this task

Follow the steps below to deploy your Job(s) onto a SpagoBI server.
Procedure

1. In the Repository tree view, expand Job Designs and right-click the Job to deploy.
2. In the drop-down list, select Deploy on SpagoBI to open the Deploy on SpagoBI dialog box.
3. Select the relevant SpagoBI server on the drop-down list.
4. The Label, Name and Description fields come from the Job main properties.
5. Select the relevant context in the list.
6. Click Finish once you have completed the setting operation.

Results

The Jobs are now deployed onto the relevant SpagoBI server. Open your SpagoBI administrator to execute your Jobs.

Using parallelization to optimize Job performance

Parallelization in terms of Talend Jobs means to accomplish technical processes through parallel executions. When properly designed, a parallelization-enabled technical process can be completed within a shorter time frame.

Talend Studio allows you to implement different types of parallelization depending on ranging circumstances. These circumstances could be:

1. Parallel executions of multiple subjobs. For further information, see Executing multiple subJobs in parallel on page 130.
2. Parallel iterations for reading data. For further information, see Launching parallel iterations to read data on page 131.

Parallelization is an advanced feature and requires basic knowledge about a Talend Job such as how to design and execute a Job or a subJob, how to use components and how to use the different types of connections that link components or Jobs. If you feel that you need to acquire this kind of knowledge, see What is a Job design? on page 25.

Executing multiple subJobs in parallel

The Multi thread execution feature allows you to run multiple subJobs that are active in the workspace in parallel.

As explained in the previous sections, a Job opened in the workspace can contain several subJobs and you are able to arrange their execution order using the trigger links such as OnSubjobOK. However, when the subJobs do not have any dependencies between them, you might want to launch them at the same time. For example, the following image presents four subJobs within a Job and with no dependencies in between.
The **tRunJob** component is used in this example to call each subjob they represent.

Then with the Job opened in the workspace, you need simply proceed as follows to run the subJobs in parallel:

Procedure

1. Click the **Job** tab, then the **Extra** tab to display it.

2. Select the **Multi thread execution** check box to enable the parallel execution.

 This feature is optimal when the number of threads (in general a subJob count one thread) do not exceed the number of processors of the machine you use for parallel executions. Otherwise, some of the subJobs have to wait until any processor is freed up.

Launching parallel iterations to read data

A parallelization-enabled **Iterate** connection allows the component that receives threads from the connection to read those threads in parallel.

Warning: Note that `globalMap` is thread unsafe. Be cautious when using `globalMap.put("key", "value")` and `globalMap.get("key")` to create your own global variables and then retrieve their values in your Jobs, especially after an **Iterate** connection with the parallel execution option enabled.

About this task

You need to proceed as follows to set the parallel iterations:
Procedure

1. Simply select the Iterate link of your sublob to display the related Basic settings view of the Components tab.

2. Select the Enable parallel execution check box and set the number of executions to be carried out in parallel.

When executing your Job, the number of parallel iterations will be distributed onto the available processors.

3. Select the Statistics check box of the Run view to show the real time parallel executions on the design workspace.

Mapping data flows

Map editor interfaces

The most common way to handle multiple input and output flows including transformations and data re-routing is to use dedicated mapping components.

Mapping components are advanced components which require more detailed explanation than other Talend components. The Map Editor is an “all-in-one” tool allowing you to define all parameters needed to map, transform and route your data flows via a convenient graphical interface.

You can minimize and restore the Map Editor and all tables in the Map Editor using the window icons.
This figure presents the interface of tMap. Those of the other mapping components differ slightly in appearance. For example, in addition to the Schema editor and the Expression editor tabs on the lower part of this interface, tXMLMap has a third tab called Tree schema editor. For further information about tXMLMap, see tXMLMap operation on page 169.

The Map Editor is made of several panels:

- The **Input panel** is the top left panel on the editor. It offers a graphical representation of all (main and lookup) incoming data flows. The data are gathered in various columns of input tables. Note that the table name reflects the main or lookup row from the Job design on the design workspace.

- The **Variable panel** is the central panel in the Map Editor. It allows the centralization of redundant information through the mapping to variable and allows you to carry out transformations.

- The **Search panel** is above the Variable panel. It allow you to search in the editor for columns or expressions that contain the text you enter in the Find field.

- The **Output panel** is the top right panel on the editor. It allows mapping data and fields from Input tables and Variables to the appropriate Output rows.

- Both bottom panels are the Input and Output schemas description. The Schema editor tab offers a schema view of all columns of input and output tables in selection in their respective panel.

- **Expression editor** is the edition tool for all expression keys of Input/Output data, variable expressions or filtering conditions.

The name of input/output tables in the Map Editor reflects the name of the incoming and outgoing flows (row connections).
The following sections present separately different mapping components of which each is able to map flows of a specific nature.

tMap operation

tMap allows the following types of operations:

- data multiplexing and demultiplexing,
- data transformation on any type of fields,
- fields concatenation and interchange,
- field filtering using constraints,
- data rejecting.

As all these operations of transformation and/or routing are carried out by **tMap**, this component cannot be a start or end component in the Job design.

tMap uses incoming connections to pre-fill input schemas with data in the **Map Editor**. Therefore, you cannot create new input schemas directly in the **Map Editor**. Instead, you need to implement as many **Row** connections incoming to **tMap** component as required, in order to create as many input schemas as needed.

The same way, create as many output row connections as required. However, you can fill in the output with content directly in the **Map Editor** through a convenient graphical editor.

Note that there can be only one **Main** incoming rows. All other incoming rows are of **Lookup** type. Related topic: **Row connection** on page 60.

Lookup rows are incoming connections from secondary (or reference) flows of data. These reference data might depend directly or indirectly on the primary flow. This dependency relationship is translated with a graphical mapping and the creation of an expression key.

The **Map Editor** requires the connections to be implemented in your Job in order to be able to define the input and output flows in the **Map Editor**. You also need to create the actual mapping in your Job in order to display the **Map Editor** in the **Preview** area of the **Basic settings** view of the **tMap** component.
To open the **Map Editor** in a new window, double-click the **tMap** icon in the design workspace or click the three-dot button next to the **Map Editor** in the **Basic settings** view of the **tMap** component.

The following sections give the information necessary to use the **tMap** component in any of your Job designs.

Setting the input flow in the Map Editor

The order of the **Input** tables is essential. The top table reflects the **Main** flow connection, and for this reason, is given priority for reading and processing through the **tMap** component.

For this priority reason, you are not allowed to move up or down the **Main** flow table. This ensures that no Join can be lost.
Although you can use the up and down arrows to interchange Lookup tables order, be aware that the Joins between two lookup tables may then be lost.

Filling in Input tables with a schema

To fill in the input tables, you need to define either the schemas of the input components connected to the tMap component on your design workspace, or the input schemas within the Map Editor.

For more information about setting a component schema, see Defining component properties on page 39.

For more information about setting an input schema in the Map Editor, see Setting schemas in the Map Editor on page 157.

Main and Lookup table content

The order of the Input tables is essential.

The Main Row connection determines the Main flow table content. This input flow is reflected in the first table of the Map Editor's Input panel.

The Lookup connections’ content fills in all other (secondary or subordinate) tables which displays below the Main flow table. If you have not define the schema of an input component yet, the input table displays as empty in the Input area.

The key is also retrieved from the schema defined in the Input component. This Key corresponds to the key defined in the input schema where relevant. It has to be distinguished from the hash key that is internally used in the Map Editor, which displays in a different color.

Variables

You can use global or context variables or reuse the variable defined in the Variables area. Press Ctrl+Space bar to access the list of variables. This list gathers together global, context and mapping variables.

The list of variables changes according to the context and grows along new variable creation. Only valid mappable variables in the context show on the list.

Docked at the Variable list, a metadata tip box display to provide information about the selected column.
Related topic: Mapping variables on page 142

Using Explicit Join

In fact, **Joins** let you select data from a table depending upon the data from another table. In the **Map Editor** context, the data of a **Main** table and of a **Lookup** table can be bound together on **expression keys**. In this case, the order of table does fully make sense.

Simply drop column names from one table to a subordinate one, to create a **Join** relationship between the two tables. This way, you can retrieve and process data from multiple inputs.

The join displays graphically as a purple link and creates automatically a key that will be used as a hash key to speed up the match search.

You can create direct joins between the main table and lookup tables. But you can also create indirect joins from the main table to a lookup table, via another lookup table. This requires a direct join between one of the **Lookup** table to the **Main** one.

Note: You cannot create a **Join** from a subordinate table towards a superior table in the **Input** area.

The **Expression key** field which is filled in with the dragged and dropped data is editable in the input schema, whereas the column name can only be changed from the **Schema editor** panel.

You can either insert the dragged data into a new entry or replace the existing entries or else concatenate all selected data into one cell.
For further information about possible types of drag and drops, see Mapping the Output setting on page 151.

Note: If you have a big number of input tables, you can use the minimize/maximize icon to reduce or restore the table size in the **Input** area. The Join binding two tables remains visible even though the table is minimized.

Creating a Join automatically assigns a hash key onto the joined field name. The key symbol displays in violet on the input table itself and is removed when the Join between the two tables is removed.

Related topics:
- Setting schemas in the Map Editor on page 157
- Using Inner Join on page 141
Along with the explicit Join you can select whether you want to filter down to a unique match or if you allow several matches to be taken into account. In this last case, you can choose to consider only the first or the last match or all of them.

Define the match model for an explicit Join

Before you begin

To define the match model for an explicit Join:

Procedure

1. Click the tMap settings button at the top of the table to which the Join links to display the table properties.
2. Click in the Value field corresponding to Match Model and then click the three-dot button that appears to open the Options dialog box.
3. In the Options dialog box, double-click the wanted match model, or select it and click OK to validate the setting and close the dialog box.

Unique Match

This is the default selection when you implement an explicit Join. This means that only the last match from the Lookup flow will be taken into account and passed on to the output.

The other matches will be then ignored.

First Match

This selection implies that several matches can be expected in the lookup. The First Match selection means that in the lookup only the first encountered match will be taken into account and passed onto the main output flow.

The other matches will then be ignored.

All Matches

This selection implies that several matches can be expected in the lookup flow. In this case, all matches are taken into account and passed on to the main output flow.
Using Inner Join
The Inner join is a particular type of Join that distinguishes itself by the way the rejection is performed.

This option avoids that null values are passed on to the main output flow. It allows also to pass on the rejected data to a specific table called Inner Join Reject table.

If the data searched cannot be retrieved through the explicit Join or the filter Join, in other words, the Inner Join cannot be established for any reason, then the requested data will be rejected to the Output table defined as Inner Join Reject table if any.

Simply drop column names from one table to a subordinate one, to create a Join relationship between the two tables. The Join is displayed graphically as a purple link and creates automatically a key that will be used as a hash key to speed up the match search.

About this task
To define the type of an explicit Join:

Procedure
1. Click the tMap settings button at the top of the table to which the Join links to display the table properties.
2. Click in the Value field corresponding to Join Model and then click the three-dot button that appears to open the Options dialog box.
3. In the Options dialog box, double-click the wanted Join type, or select it and click OK to validate the setting and close the dialog box.

Note: An Inner Join table should always be coupled to an Inner Join Reject table. For how to define an output table as an Inner Join Reject table, see Lookup Inner Join rejection on page 154.

You can also use the filter button to decrease the number of rows to be searched and improve the performance (in Java).

Related topics:
• Lookup Inner Join rejection on page 154.
• **Filtering an input flow** on page 142.

Using the All Rows option

By default, without a Join set up, in each input table of the input area of the Map Editor, the All rows match model option is selected. This All rows option means that all the rows are loaded from the Lookup flow and searched against the Main flow.

The output corresponds to the Cartesian product of both table (or more tables if need be).

Note: If you create an explicit or an inner Join between two tables, the All rows option is no longer available. You then have to select Unique match, First match or All matches. For more information, see Using Explicit Join on page 138 and Using Inner Join on page 141.

Filtering an input flow

Click the **Filter** button next to the tMap settings button to add a Filter field.

![Filter field](image)

In the Filter field, type in the condition to be applied. This allows to reduce the number of rows parsed against the main flow, enhancing the performance on long and heterogeneous flows.

You can use the Auto-completion tool via the Ctrl+Space keystrokes in order to reuse schema columns in the condition statement.

Removing input entries from table

To remove input entries, click the red cross sign on the Schema Editor of the selected table. Press **Ctrl** or **Shift** and click fields for multiple selection to be removed.

Note: If you remove Input entries from the Map Editor schema, this removal also occurs in your component schema definition.

Mapping variables

The **Var** table (variable table) regroups all mapping variables which are used numerous times in various places.

You can also use the **Expression** field of the **Var** table to carry out any transformation you want to, using Java Code.

Variables help you save processing time and avoid you to retype many times the same data.
There are various possibilities to create variables:

- Type in freely your variables in Java. Enter the strings between quotes or concatenate functions using the relevant operator.
- Add new lines using the plus sign and remove lines using the red cross sign. And press Ctrl+Space to retrieve existing global and context variables.
- Drop one or more input entries to the Var table.

Select an entry on the Input area or press Shift key to select multiple entries of one Input table.

Press Ctrl to select either non-appended entries in the same input table or entries from various tables. When selecting entries in the second table, notice that the first selection displays in grey. Hold the Ctrl key down to drag all entries together. A tooltip shows you how many entries are in selection.

Then various types of drag-and-drops are possible depending on the action you want to carry out.

<table>
<thead>
<tr>
<th>To...</th>
<th>You need to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert all selected entries as separated variables.</td>
<td>Simply drag & drop to the Var table. Arrows show you where the new Var entry can be inserted. Each Input is inserted in a separate cell.</td>
</tr>
<tr>
<td>Concatenate all selected input entries together with an existing Var entry.</td>
<td>Drag & drop onto the Var entry which gets highlighted. All entries get concatenated into one cell. Add the required operators using Java operations signs. The dot concatenates string variables.</td>
</tr>
<tr>
<td>Overwrite a Var entry with selected concatenated Input entries.</td>
<td>Drag & drop onto the relevant Var entry which gets highlighted then press Ctrl and release. All selected entries are concatenated and overwrite the highlighted Var.</td>
</tr>
<tr>
<td>Concatenate selected input entries with highlighted Var entries and create new Var lines if needed</td>
<td>Drag & drop onto an existing Var then press Shift when browsing over the chosen Var entries. First entries get concatenated with the highlighted Var entries. And if necessary new lines get created to hold remaining entries.</td>
</tr>
</tbody>
</table>

Accessing global or context variables

Press Ctrl+Space to access the global and context variable list.

Appended to the variable list, a metadata list provides information about the selected column.

Removing variables

To remove a selected Var entry, click the red cross sign. This removes the whole line as well as the link.
Press **Ctrl** or **Shift** and click fields for multiple selection then click the red cross sign.

Working with expressions

All expressions (**Input**, **Var** or **Output**) and constraint statements can be viewed and edited directly in the expression fields, in the expression editor, and in the Expression Builder.

Accessing the expression editor

About this task

The expression editor provides visual comfort to write any function or transformation in a handy dedicated view.

You can write the expressions necessary for the data transformation directly in the Expression editor view located in the lower half of the expression editor.

To open the **Expression editor** view, complete the following:

Procedure

1. Double-click the **tMap** component in your Job design to open the **Map Editor**.
2. In the lower half of the editor, click the **Expression editor** tab to open the corresponding view.

 Note: To edit an expression, select it in the **Input** panel and then click the **Expression editor** tab and modify the expression as required.

3. Enter the Java code according to your needs. The corresponding expression in the output panel is synchronized.

Results

Note: Refer to the Java documentation for more information regarding functions and operations.

Writing code using the Expression Builder

Some Jobs require pieces of code to be written in order to provide components with parameters. In the **Component** view of some components, an **Expression Builder** interface can help you write such pieces of code (in Java), known as expressions.
Using the Expression Builder of \texttt{tMap}, you can edit the expression for an input column, an output column, or a variable, or change the expressions for multiple output columns at the same time.

\textbf{Editing invidual expressions}

\textbf{About this task}

The following example shows how to use the \textbf{Expression Builder} to edit two indiviual expressions.

In this example, two input flows are connected to the \texttt{tMap} component.

- From the DB input, comes a list of names made of a first name and a last name separated by a space char.
- From the File input, comes a list of US states, in lower case.

In the \texttt{tMap}, use the expression builder to: First, replace the blank char separating the first and last names with an underscore char, and second, change the states from lower case to upper case.

\textbf{Procedure}

1. In the \texttt{tMap}, set the relevant inner join to set the reference mapping.
 For more information regarding \texttt{tMap}, see \texttt{tMap operation} on page 134 and \texttt{Map editor interfaces} on page 132.

2. From the main (row1) input, drop the \texttt{Names} column to the output area, and the \texttt{State} column from the lookup (row2) input towards the same output area.

3. Click in the first \textbf{Expression} field (row1.Name), and then click the \ldots button that appears next to the expression.

The \textbf{Expression Builder} dialog box opens up.
4. In the **Category** area, select the relevant action you want to perform. In this example, select **StringHandling** and select the **EREPLACE** function.

5. In the **Expression** area, paste `row1.Name` in place of the text expression, in order to get:

 `StringHandling.EREPLACE(row1.Name," ","_")`. This expression will replace the separating space char with an underscore char in the char string given.

 Note that the **CHANGE** and **EREPLACE** functions in the **StringHandling** category are used to substitute all substrings that match the given regular expression in the given old string with the given replacement and returns a new string. Their three parameters are:

 - `oldStr` the old string
 - `newStr` the regular expression to match
 - `replacement` the string to be substituted for every match

6. Now check that the output is correct, by typing in the relevant **Value** field of the **Test** area, a dummy value, e.g. **Chuck Norris** and clicking **Test!**. The correct change should be carried out, for example, **Chuck_Norris**.

7. Click **OK** to validate the changes, and then proceed with the same operation for the second column (**State**).

8. In the **tMap** output, select the `row2.State` Expression and click the `[...]` button to open the **Expression builder** again.
This time, the StringHandling function to be used is UPCASE. The complete expression says:
StringHandling.UPCASE(row2.State).

9. Once again, check that the expression syntax is correct using a dummy Value in the Test area, for example indiana. The Test! result should display INDIANA for this example. Then, click OK to validate the changes.

Both expressions are now displayed in the tMap Expression field.

Results

These changes will be carried out along the flow processing. The output of this example is as shown below.

Starting job NamesAndStates at 10:02 10/10/2007.

<table>
<thead>
<tr>
<th>tLogRow_1</th>
<th>RandomStates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Column</td>
</tr>
<tr>
<td>William_Grant</td>
<td>IOWA</td>
</tr>
<tr>
<td>William_Hoover</td>
<td>NEW YORK</td>
</tr>
<tr>
<td>Grover_Lincoln</td>
<td>NORTH DAKOTA</td>
</tr>
<tr>
<td>Lyndon_Jefferson</td>
<td>OHIO</td>
</tr>
<tr>
<td>Gerald_Hayes</td>
<td>WASHINGTON</td>
</tr>
<tr>
<td>Benjamin_Grant</td>
<td>MAINE</td>
</tr>
<tr>
<td>George_Fierce</td>
<td>CONNECTICUT</td>
</tr>
<tr>
<td>Jimmy_Reagen</td>
<td>ALASKA</td>
</tr>
<tr>
<td>Martin_Hayes</td>
<td>WASHINGTON</td>
</tr>
<tr>
<td>Franklin_Jefferson</td>
<td>IOWA</td>
</tr>
<tr>
<td>Andrew_Nixon</td>
<td>NEW HAMPSHIRE</td>
</tr>
</tbody>
</table>
Setting expressions for multiple output columns simultaneously

About this task

tMap allows you to define the transformation behavior for multiple output columns at the same time. Using a simple transformation Job, the following example shows how to define expressions on multiple columns in a batch manner in tMap.

Here is the content of the input CSV file used in this example:

```
id;firstname;lastname;city;state
1; Andrew; Adams; Madison; Rhode Island
2; Andrew; Garfield; Saint Paul; Colorado
3; Woodrow; Eisenhower; Juneau; New Hampshire
4; Woodrow; Jackson; Denver; Maine
5; Lyndon; Buchanan; Pierre; Kentucky
6; Bill; Tyler; Helena; New York
7; George; Adams; Oklahoma City; Alaska
8; Ulysses; Garfield; Santa Fe; Massachusetts
9; Thomas; Coolidge; Charleston; Mississippi
10; John; Polk; Carson City; Louisiana
```

In this example, all the output columns of type String will be trimmed to remove preceding and trailing whitespace and the last names and state names will be transformed to upper case.

Procedure

1. In the Map Editor, complete the input-output mappings.
2. Select the columns of type String in the output table, namely \texttt{firstname}, \texttt{lastname}, \texttt{city}, and \texttt{state} in this example, and right-click the selection so that the \textbf{Apply Routine} button shows up.

3. Click the \textbf{Apply Routine} button to open the \textbf{Expression Builder} dialog box.

4. Select \texttt{StringHandling} in the \textbf{Categories} area, and then double-click the \texttt{TRIM} function in the \textbf{Functions} area to get \texttt{StringHandling.TRIM(${0})} in the \textbf{Expression} field.
5. Click OK to close the **Expression Builder** dialog box.

6. Select the **lastname** and **state** columns in the output table of the Map Editor, right-click the selection, and then click the **Apply Routine** button to open the **Expression Builder** dialog box.

7. Select **StringHandling** in the **Categories** area, and then double-click the **UPPERCASE** function in the **Functions** area to get `StringHandling(ToUpper($0))` in the **Expression** field.

8. Click **OK** to close the **Expression Builder** dialog box.

Results

Now the expressions on those output columns look like below:
The functions will be carried out along the flow processing. The output of this example is as shown below.

Execution

<table>
<thead>
<tr>
<th>statistics</th>
<th>connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>tLogRow_1</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>firstname</td>
</tr>
<tr>
<td>1</td>
<td>Andrew</td>
</tr>
<tr>
<td>2</td>
<td>Andrew</td>
</tr>
<tr>
<td>3</td>
<td>Woodrow</td>
</tr>
<tr>
<td>4</td>
<td>Woodrow</td>
</tr>
<tr>
<td>5</td>
<td>Lynncon</td>
</tr>
<tr>
<td>6</td>
<td>Bill</td>
</tr>
<tr>
<td>7</td>
<td>George</td>
</tr>
<tr>
<td>8</td>
<td>Ulysses</td>
</tr>
<tr>
<td>9</td>
<td>Thomas</td>
</tr>
<tr>
<td>10</td>
<td>John</td>
</tr>
</tbody>
</table>

Mapping the Output setting

Tip:

There is no order among the output flows of tMap. To make the output flows to be executed one by one, you can output them to temporary files or memory, and then read and insert them into files or databases using different subjobs linked by Trigger > OnSubjobOK connections.

On the design workspace, the creation of a Row connection from the tMap component to the output components adds Output schema tables in the Map Editor.

You can also add an Output schema in your Map Editor, using the plus sign from the tool bar of the Output area.

You have as well the possibility to create a join between your output tables. The join on the tables enables you to process several flows separately and unite them in a single output.

Note: The join table retrieves the schema of the source table.

When you click the [+] button to add an output schema or to make a join between your output tables, a dialog box opens. You have then two options.
Select...	To...
New output | Add an independent table.
Create join table from | Create a join between output tables. In order to do so, select in the drop down list the table from which you want to create the join. In the Named field, type in the name of the table to be created.

Unlike the Input area, the order of output schema tables does not make such a difference, as there is no subordination relationship between outputs (of Join type).

Once all connections, hence output schema tables, are created, you can select and organize the output data via drag & drops.

You can drop one or several entries from the Input area straight to the relevant output table.

Press Ctrl or Shift, and click entries to carry out multiple selection.

Or you can drag expressions from the Var area and drop them to fill in the output schemas with the appropriate reusable data.

Note that if you make any change to the Input column in the Schema Editor, a dialog prompts you to decide to propagate the changes throughout all Input/Variable/Output table entries, where concerned.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag & Drop onto existing expressions.</td>
<td>Concatenates the selected expression with the existing expressions.</td>
</tr>
<tr>
<td>Drag & Drop to insertion line.</td>
<td>Inserts one or several new entries at start or end of table or between two existing lines.</td>
</tr>
<tr>
<td>Drag & Drop + Ctrl.</td>
<td>Replaces highlighted expression with selected expression.</td>
</tr>
<tr>
<td>Drag & Drop + Shift.</td>
<td>Adds the selected fields to all highlighted expressions. Inserts new lines if needed.</td>
</tr>
<tr>
<td>Drag & Drop + Ctrl + Shift.</td>
<td>Replaces all highlighted expressions with selected fields. Inserts new lines if needed.</td>
</tr>
</tbody>
</table>

You can add filters and rejections to customize your outputs.

Creating complex expressions

If you have complex expressions to create, or advanced changes to be carried out on the output flow, then the Expression Builder interface can help in this task.
Procedure

1. Click the **Expression** field of your input or output table to display the [...] button.
2. Then click this three-dot button to open the **Expression Builder**.

 For more information regarding the Expression Builder, see Writing code using the Expression Builder on page 144.

Filters

Filters allow you to make a selection among the input fields, and send only the selected fields to various outputs.

Click the button at the top of the table to add a filter line.

You can enter freely your filter statements using Java operators and functions.

Drop expressions from the **Input** area or from the **Var** area to the Filter row entry of the relevant Output table.

An orange link is then created. Add the required Java operator to finalize your filter formula.

You can create various filters on different lines. The AND operator is the logical conjunction of all stated filters.

Output rejection

About this task

Reject options define the nature of an output table.

It groups data which do not satisfy one or more filters defined in the standard output tables. Note that as standard output tables, are meant all non-reject tables.

This way, data rejected from other output tables, are gathered in one or more dedicated tables, allowing you to spot any error or unpredicted case.

The Reject principle concatenates all non Reject tables filters and defines them as an ELSE statement.

To define an output table as the Else part of the regular tables:

Procedure

1. Click the **tMap settings** button at the top of the output table to display the table properties.
2. Click in the **Value** field corresponding to **Catch output reject** and then click the [...] button that appears to display the **Options** dialog box.

3. In the **Options** dialog box, double-click **true**, or select it and click **OK** to validate the setting and close the dialog box.

Results

You can define several Reject tables, to offer multiple refined outputs. To differentiate various Reject outputs, add filter lines, by clicking on the plus arrow button.

Once a table is defined as Reject, the verification process will be first enforced on regular tables before taking in consideration possible constraints of the Reject tables.

Note that data are not exclusively processed to one output. Although a data satisfied one constraint, hence is routed to the corresponding output, this data still gets checked against the other constraints and can be routed to other outputs.

Lookup Inner Join rejection

About this task

The Inner Join is a Lookup Join. The Inner Join Reject table is a particular type of Rejection output. It gathers rejected data from the main row table after an Inner Join could not be established.

To define an Output flow as container for rejected Inner Join data, create a new output component on your Job that you connect to the **Map Editor**. Then in the **Map Editor**, follow the steps below:

Procedure

1. Click the **tMap settings** button at the top of the output table to display the table properties.

2. Click in the **Value** field corresponding to **Catch lookup inner join reject** and then click the [...] button that appears to display the **Options** dialog box.

3. In the **Options** dialog box, double-click **true**, or select it and click **OK** to validate the setting and close the dialog box.
Removing Output entries
To remove Output entries, click the cross sign on the Schema Editor of the selected table.

Handling errors

About this task
The Die on error option prevents error to be processed. To do so, it stops the Job execution as soon as an error is encountered. The tMap component provides this option to prevent processing erroneous data. The Die on error option is activated by default in tMap.

Deactivating the Die on error option will allow you to skip the rows on error and complete the process for error-free rows on one hand, and to retrieve the rows on error and manage them if needed.

To deactivate the Die on error option:

Procedure
1. Double-click the tMap component on the design workspace to open the Map Editor.
2. Click the Property Settings button at the top of the input area to display the Property Settings dialog box.
3. In Property Settings dialog box, clear the Die on error check box and click OK.
Results

A new table called `ErrorReject` appears in the output area of the **Map Editor**. This output table automatically comprises two columns: `errorMessage` and `errorStackTrace`, retrieving the message and stack trace of the error encountered during the Job execution. Errors can be unparsable dates, null pointer exceptions, conversion issues, etc.

You can also drag and drop columns from the input tables to this error reject output table. Those erroneous data can be retrieved with the corresponding error messages and thus be corrected afterward.

Once the error reject table is set, its corresponding flow can be sent to an output component.
To do so, on the design workspace, right-click the tMap component, select Row > ErrorReject in the menu, and click the corresponding output component, here tLogRow.

When you execute the Job, errors are retrieved by the ErrorReject flow.

```
Starting job Die_on_error at 17:30 01/09/2010.

java.text.ParseException: Unparseable date: "08 01 1980"
java.lang.RuntimeException: Unparseable date: "08 01 1980"
    at routines.TalendDate.parseDate(TalendDate.java:503)
at doc.die_on_error_0_1.Die_on_error.tFileInputDelimited_2Process(Die_on_error.java:1409)
at doc.die_on_error_0_1.Die_on_error.runJobInTOS(Die_on_error.java:2262)
at doc.die_on_error_0_1.Die_on_error.main(Die_on_error.java:2150)
Caused by: java.text.ParseException: Unparseable date: "08 01 1980"
    at java.text.SimpleDateFormat.parseSimple(Unknown Source)
    at routines.TalendDate.parseDate(TalendDate.java:501)
... 3 more
1|1|08 01 1980
Job Die_on_error ended at 17:30 01/09/2010. [exit code=0]
```

The result contains the error message, its stack trace, and the two columns, id and date, dragged and dropped to the ErrorReject table, separated by a pipe "|".

Setting schemas in the Map Editor

In the Map Editor, you can define the type of a table schema as Built-In so that you can modify the data structure in the Schema editor panel, or Repository and retrieve the data structure from the Repository. By default, the schema type is set to Built-In for all tables.
Retrieving the schema structure from the Repository

About this task

To retrieve the schema structure of the selected table from the Repository:

Procedure

1. Click the tMap Settings button at the top of the table to display the table properties.
2. Click in the Value field of Schema Type, and then click the three-dot button that appears to open the Options dialog box.
3. In the Options dialog box, double-click Repository, or select it and click OK, to close the dialog box and display the Schema Id property beneath Schema Type.

Note: If you close the Map Editor now without specifying a Repository schema item, the schema type changes back to Built-In.

4. Click in the Value field of Schema Id, and then click the [...] button that appears to display the Repository Content dialog box.
5. In the Repository Content dialog box, select your schema as you define a centrally stored schema for any component, and then click OK.

The Value field of Schema Id is filled with the schema you just selected, and everything in the Schema editor panel for this table becomes read-only.
Warning: Changing the schema type of the subordinate table across a Join from Built-In to Repository causes the Join to get lost.

Note: Changes to the schema of a table made in the Map Editor are automatically synchronized to the schema of the corresponding component connected with the tMap component.

Searching schema columns

About this task

The schema column filter of tMap allows you to quickly search an input or output schema column or multiple columns among hundreds of them in one go.

The following example shows how to find columns containing the string "customer" in the output table of the Map Editor.

Procedure

1. Open the Map Editor, and click the button at the top of the table to open the filter area.
2. In the filter area, type in your search string, `customer` in this example.
 As you start to type, the table displays the columns that match the characters.

Using the Schema Editor

The **Schema Editor** details all fields of the selected table. With the schema type of the table set to **Built-In**, you can modify the schema of the table.
Use the tool bar below the schema table, to add, move or remove columns from the schema.

You can also load a schema from the repository or export it into a file.

<table>
<thead>
<tr>
<th>Metadata</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Column name as defined on the Map Editor schemas and on the Input or Output component schemas.</td>
</tr>
<tr>
<td>Key</td>
<td>The Key shows if the expression key data should be used to retrieve data through the Join link. If unchecked, the Join relation is disabled.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of data: String, Integer, Date, etc.</td>
</tr>
<tr>
<td>Note: This column should always be defined in a Java version.</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>-1 shows that no length value has been defined in the schema.</td>
</tr>
<tr>
<td>Precision</td>
<td>Defines the number of digits to the right of the decimal point.</td>
</tr>
<tr>
<td>Nullable</td>
<td>Clear this check box if the field value should not be null.</td>
</tr>
<tr>
<td>Default</td>
<td>Shows any default value that may be defined for this field.</td>
</tr>
<tr>
<td>Comment</td>
<td>Free text field. Enter any useful comment.</td>
</tr>
</tbody>
</table>

Note: Input metadata and output metadata are independent from each other. You can, for instance, change the label of a column on the output side without the column label of the input schema being changed.

However, any change made to the metadata are immediately reflected in the corresponding schema on the tMap relevant (Input or Output) area, but also on the schema defined for the component itself on the design workspace.

A Red colored background shows that an invalid character has been entered. Most special characters are prohibited in order for the Job to be able to interpret and use the text entered in the code. Authorized characters include lower-case, upper-case, figures except as start character.

Enabling automatic data type conversion

Before you begin

When processing data flows using a tMap, if the input and output columns across a mapping are of different data types, compiling errors may occur at the Job execution time. The Enable Auto-Conversion of types option in the tMap helps avoid such errors.

To enable this feature in tMap in a Job:

Procedure

1. Click the button at the top of the Map Editor to open the Property Settings dialog box.
2. Select the Enable Auto-Conversion of types check box and then click OK.
What to do next

You can activate the automatic conversion option at the project level so that any tMap component added afterwards in the project will have this feature enabled.

Defining rules to override the default conversion behavior

If needed, you can also define conversion rules to override the default conversion behavior of tMap.

Procedure

1. On the toolbar of the Studio main window, click or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.
2. In the tree view of the dialog box, expand General and select Auto-Conversion of types to open the relevant view.
3. Select the Enable Auto-Conversion of types check box to activate the automatic type conversion feature for all tMap components added afterwards in the project.

4. If needed, click the [+] button to add a line, select the source and target data types, and define a Java function for data type conversion to create a conversion rule to override the default conversion behavior of tMap for data that matches the rule.

You can press Ctrl+Space in the Conversion Function field to access a list of available Java functions.

The rule shown in this example will match mappings with the input data type of String and output data type of Integer.

You can created as many conversion rules as you want.

5. Click Apply to apply your changes and then OK to close the dialog box.

Solving memory limitation issues in tMap use

When handling large data sources, including for example, numerous columns, large number of lines or of column types, your system might encounter memory shortage issues that prevent your Job, to complete properly, in particular when using a tMap component for your transformation.

A feature has been added (in Java only for the time being) to the tMap component, in order to reduce the memory in use for lookup loading. In fact, rather than storing the temporary data in the system memory and thus possibly reaching the memory limitation, the Store temp data option allows you to choose to store the temporary data onto a directory of your disk instead.

This feature comes as an option to be selected in the Lookup table of the input data in the Map Editor.

To enable the Store temp data option:

1. Double-click the tMap component in your Job to launch the Map Editor.
2. In input area, click the Lookup table describing the temporary data you want to be loaded onto the disk rather than in the memory.
3. Click the tMap settings button to display the table properties.
4. Click in the Value field corresponding to Store temp data, and then click the [...] button to display the Options dialog box.
5. In the Options dialog box, double-click true, or select it and click OK, to enable the option and close the dialog box.

For this option to be fully activated, you also need to specify the directory on the disk, where the data will be stored, and the buffer size, namely the number of rows of data each temporary file will contain. You can set the temporary storage directory and the buffer size either in the Map Editor or in the tMap component property settings.

To set the temporary storage directory and the buffer size in the Map Editor:

1. Click the Property Settings button at the top of the input area to display the Property Settings dialog box.
2. In Property Settings dialog box, fill the Temp data directory path field with the full path to the directory where the temporary data should be stored.
3. In the Max buffer size (nr of rows) field, specify the maximum number of rows each temporary file can contain. The default value is 2,000,000.
4. Click OK to validate the settings and close the Property Settings dialog box.
To set the temporary storage directory in the **tMap** component property settings without opening the **Map Editor**:

1. Click the **tMap** component to select it on the design workspace, and then select the **Component** tab to show the **Basic settings** view.
2. In the **Store on disk** area, fill the **Temp data directory path** field with the full path to the directory where the temporary data should be stored.

 Alternatively, you can use a context variable through the **Ctrl+Space** bar if you have set the variable in a Context group in the repository. For more information about contexts, see *Using contexts and variables* on page 66.

At the end of the subJob, the temporary files are cleared.

This way, you will limit the use of allocated memory per reference data to be written onto temporary files stored on the disk.

Note: As writing the main flow onto the disk requires the data to be sorted, note that the order of the output rows cannot be guaranteed.
On the Advanced settings view, you can also set a buffer size if needed. Simply fill out the field Max buffer size (nb of rows) in order for the data stored on the disk to be split into as many files as needed.

Handling Lookups

When implementing a join (including Inner Join and Left Outer Join) in a tMap between different data sources, there is always only one main flow and one or more lookup flows connected to the tMap. All the records of the lookup flow need to be loaded before processing each record of the main flow. Three types of lookup loading models are provided suiting various types of business requirement and the performance needs: Load once, Reload at each row, and Reload at each row (cache).

- **Load once**: it loads once (and only once) all the records from the lookup flow either in the memory or in a local file before processing each record of the main flow in case the Store temp data option is set to true. This is the default setting and the preferred option if you have a large set of records in the main flow to be processed using a join to the lookup flow.
- **Reload at each row**: it loads all the records of the lookup flow for each record of the main flow. Generally, this option increases the Job execution time due to the repeated loading of the lookup flow for each main flow record. However, this option is preferred in the following situations:
 - The lookup data flow is constantly updated and you want to load the latest lookup data for each record of the main flow to get the latest data after the join execution;
 - There are very few data from the main flow while a large amount of data from a database table in the lookup flow. In this case, it might cause an OutOfMemory exception if you use the Load once option. You can use dynamic variable settings such as where clause to update the lookup flow on the fly as it gets loaded, before the main flow join is processed. For an example, refer to Reloading data at each row on page 167.

Note that Reload at each row in a streaming Job is supported by the Lookup Input components only such as tMongoDBLookupInput.

- **Reload at each row (cache)**: it functions like the Reload at each row model, all the records of the lookup flow are loaded for each record of the main flow. However, this model can’t be used with the Store temp data on disk option. The lookup data are cached in memory, and when a new loading occurs, only the records that are not already exist in the cache will be loaded, in order to avoid loading the same records twice. This option optimizes the processing time and helps improve processing performance of the tMap component. Note that you can not use Reload at each row (cache) and Store temp data at the same time.

Note that when your lookup is a database table, the best practise is to open the connection to the database in the beginning of your Job design in order to optimize performance.

Setting the loading mode of a lookup flow

About this task

To set the loading mode of a lookup flow:

Procedure

1. Click the tMap settings button at the top right of the lookup table to display the table properties.
2. Click in the Value field corresponding to Lookup Model, and then click the [...] button to display the Options dialog box.
3. In the **Options** dialog box, double-click the wanted loading mode, or select it and then click **OK**, to validate the setting and close the dialog box.

Results

For use cases using these options, see the related documentation of the **tMap** component.

Reloading data at each row

About this task

The **Reload at each row** option is used to load all the records of a lookup flow for each record of the main flow.

When the main flow has much less rows than the lookup flow (for example, with a ratio of 1000 or more) and the lookup input is a database component, the advantage of this approach is that it helps deal with the fact that the amount of lookup data increases over time, since you can run queries against the data from the main flow in the database component to select only the lookup data that is relevant for each record in the main flow, such as in the following example which uses lookup data from a MySQL database.

![Diagram](image)

The schemas of the main flow, the lookup flow and the output flow read as follows:
You can select from the MySQL database only the data that matches the values of the `id` column of the main flow. To do this, proceed as follows:

Procedure

1. Double-click `tSetGlobalVar` to open its **Component** view.

2. Click the `[+]` button to add one row and name the **Key** to `id` and the **Value** to `row1.id`.

3. Double-click `tMysqlInput` to open its **Component** view.
4. In the Query field, enter the query to select the data that matches the id column of the main flow. In this example, this query reads: `Select * from person where id="+(Integer)globalMap.get("id")`

Results

Refer to the related documentation of the components used in this example for more information.

tXMLMap operation

Note: Before starting this section, we recommend reading the previous tMap sections for the basic knowledge of a Talend mapping component.

tXMLMap is fine-tuned to leverage the Document data type for processing XML data, a case of transformation that often mixes hierarchical data (XML) and flat data together. This Document type carries a complete user-specific XML flow. In using tXMLMap, you are able to add as many input or output flows as required into a visual map editor to perform, on these flows, the operations as follows:

- data multiplexing and demultiplexing,
- data transformation on any type of fields, particularly on the Document type,
- data matching via different models, for example, the Unique match mode (related topic: Using Explicit Join on page 138),
- Automated XML tree construction on both of the input and the output sides,
- inner join and left outer join (related topic: Using Inner Join on page 141)
- lookup between data sources whatever they are flat or XML data using models like Load once (related topic: Handling Lookups on page 166),
- fields concatenation and interchange,
- field filtering using constraints,
- data rejecting.

Like tMap, a map editor is required to configure these operations. To open this map editor, you can double-click the tXMLMap icon in the design workspace, or alternatively, click the three-dot button next to the Map Editor in the Basic settings view of the tXMLMap component.
tXMLMap and tMap use the common approaches to accomplish most of these operations. Therefore, the following sections explain only the particular operations to which tXMLMap is dedicated for processing the hierarchical XML data.

The operations focusing on hierarchical data are:

- using the Document type to create the XML tree;
- managing the output XML data;
- editing the XML tree schema.

The following sections present more relevant details.

Note: Different from tMap, tXMLMap does not provide the Store temp data option for storing temporary data onto the directory of your disk. For further information about this option of tMap, see Solving memory limitation issues in tMap use on page 163.

Using the document type to create the XML tree

The Document data type fits perfectly the conception of defining XML structure as easily as possible. When you need the XML tree structure to map the input or output flow or both, use this type. Then you can import the XML tree structure from various XML sources and edit the tree directly in the mapping editor, thus saving the manual efforts.

Setting up the Document type

About this task

The Document data type is one of the data types provided by Talend. This Document type is set up when you edit the schema for the corresponding data in the Schema editor. For further information about the schema editor, see Using the Schema Editor on page 160.

The following figure presents an example in which the input flow, Customer, is set up as the Document type. To replicate it, in the Map editor, you can simply click the [+] button to add one row on the input side of the Schema editor, rename it and select Document from the drop-down list of the given data types.
In practice for most cases, tXMLMap retrieves the schema of its preceding or succeeding components, for example, from a tFileInputXML component or in the ESB use case, from a tESBProviderRequest component. This avoids many manual efforts to set up the Document type for the XML flow to be processed. However, to continue to modify the XML structure as the content of a Document row, you need still to use the given Map editor.

Note: Be aware that a Document flow carries a user-defined XML tree and is no more than one single field of a schema, which, same as the other schemas, may contain different data types between each field. For further information about how to set a schema, see Basic Settings tab on page 39.

Once the Document type is set up for a row of data, in the corresponding data flow table in the map editor, a basic XML tree structure is created automatically to reflect the details of this structure. This basic structure represents the minimum element required by a valid XML tree in using tXMLMap:

- The root element: it is the minimum element required by an XML tree to be processed and when needs be, the foundation to develop a sophisticated XML tree.
- The loop element: it determines the element over which the iteration takes place to read the hierarchical data of an XML tree. By default, the root element is set as loop element.

This figure gives an example with the input flow, Customer. Based on this generated XML root tagged as root by default, you can develop the XML tree structure of interest.

To do this, you need to:
Procedure

1. Import the custom XML tree structure from one of the following types of sources:
 - XML or XSD files (related topic: Importing the XML tree structure from XML and XSD files on page 173)

 Note: When you import an XSD file, you will create the XML structure this XSD file describes.
 - File XML connections created and stored in the **Repository** of your Studio (related topic: Importing the XML tree structure from the Repository on page 174).

 Note: If needs be, you can develop the XML tree of interest manually using the options provided on the contextual menu.

2. Reset the loop element for the XML tree you are creating, if needs be. You can set as many loops as you need to. At this step, you may have to consider the following situations:
 - If you have to create several XML trees, you need to define the loop element for each of them.
 - If you import the XML tree from the **Repository**, the loop element will have been set depending on the set of the source structure. But you can still reset the loop element.

 For further details, see Setting or resetting a loop element for an imported XML structure on page 175.

3. Optional: If needed, you can continue to modify the imported XML tree using the options provided in the contextual menu. The following table presents the operations you can perform through the available options.

<table>
<thead>
<tr>
<th>Options</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Sub-element</td>
<td>Add elements or attributes to develop an XML tree. Related topic: Adding a sub-element or an attribute to an XML tree structure on page 176</td>
</tr>
<tr>
<td>and Create Attribute</td>
<td></td>
</tr>
<tr>
<td>Set a namespace</td>
<td>Add and manage given namespaces on the imported XML tree. Related topic: Managing a namespace on page 178</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete an element or an attribute. Related topic: Deleting an element or an attribute from the XML tree structure on page 177</td>
</tr>
<tr>
<td>Rename</td>
<td>Rename an element or an attribute.</td>
</tr>
<tr>
<td>As loop element</td>
<td>Set or reset an element as loop element. Multiple loop elements and optional loop element are supported.</td>
</tr>
<tr>
<td>As optional loop</td>
<td>This option is not available unless to the loop element you have defined. When the corresponding element exists in the source file, an optional loop element works the same way as a normal loop element; otherwise, it resets automatically its parent element as loop element or in absence of parent element in the source file, it takes the element of the higher level until the root element. But in the real-world practice, with such differences between the XML tree and the source file structure, we recommend adapting the XML tree to the source file for better performance.</td>
</tr>
<tr>
<td>Options</td>
<td>Operations</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>As group element</td>
<td>On the XML tree of the output side, set an element as group element. Related topic: Grouping the output data on page 180</td>
</tr>
<tr>
<td>As aggregate element</td>
<td>On the XML tree of the output side, set an element as aggregate element. Related topic: Aggregating the output data on page 181</td>
</tr>
<tr>
<td>Add Choice</td>
<td>Set the Choice element. Then all of its child elements developed underneath will be contained in this declaration. This Choice element originates from one of the XSD concepts. It enables tXMLMap to perform the function of the XSD Choice element to read or write a Document flow. When tXMLMap processes a choice element, the elements contained in its declaration will not be outputted unless their mapping expressions are appropriately defined.</td>
</tr>
<tr>
<td>Set as Substitution</td>
<td>Set the Substitution element to specify the element substitutable for a given head element defined in the corresponding XSD. The Substitution element enables tXMLMap to perform the function of the XSD Substitution element to read or write a Document flow. When tXMLMap processes a substitution element, the elements contained in its declaration will not be outputted unless their mapping expressions are appropriately defined.</td>
</tr>
</tbody>
</table>

The following sections present more details about the process of creating the XML tree.

Importing the XML tree structure from XML and XSD files

Importing the XML tree structure from an XML file

Procedure

1. In the input flow table of interest, right-click the column name to open the contextual menu. In this example, it is Customer.

2. From this menu, select **Import From File**.

3. In the pop-up dialog box, browse to the XML file you need to use to provide the XML tree structure of interest and double-click the file.
Importing the XML tree structure from an XSD file

Procedure
1. In the input flow table of interest, right-click the column name to open the contextual menu. In this example, it is Customer.

2. From this menu, select Import From File.
3. In the pop-up dialog box, browse to the XSD file you need to use to provide the XML tree structure of interest and double-click the file.
4. In the dialog box that appears, select an element from the Root list as the root of your XML tree, and click OK. Then the XML tree described by the XSD file imported is established.

Note: The root of the imported XML tree is adaptable:
- When importing either an input or an output XML tree structure from an XSD file, you can choose an element as the root of your XML tree.
- Once an XML structure is imported, the root tag is renamed automatically with the name of the XML source. To change this root name manually, you need use the tree schema editor. For further information about this editor, see Editing the XML tree schema on page 188.

What to do next
Then, you need to define the loop element in this XML tree structure. For further information about how to define a loop element, see Setting or resetting a loop element for an imported XML structure on page 175.

Importing the XML tree structure from the Repository

About this task
To do this, proceed as follows:

Procedure
1. In any input flow table, right click the column name to open the contextual menu. In this example, it is Customer.
2. From this menu, select **Import From Repository**.

3. In the pop-up repository content list, select the XML connection or the MDM connection of interest to import the corresponding XML tree structure.

This figure presents an example of this **Repository**-stored XML connection.

Note:

To import an XML tree structure from the **Repository**, the corresponding XML connection should have been created. For further information about how to create a file XML connection in the **Repository**, see Centralizing XML file metadata on page 239.

4. Click **OK** to validate this selection.

Results

The XML tree structure is created and a loop is defined automatically as this loop was already defined during the creation of the current **Repository**-stored XML connection.

Setting or resetting a loop element for an imported XML structure

About this task

You need to set at least one loop element for each XML tree if it does not have any. If it does, you may have to reset the existing loop element when needs be.

Whatever you need to set or reset a loop element, proceed as follows:

Procedure

1. In the created XML tree structure, right-click the element you need to define as loop. For example, you need to define the **Customer** element as loop in the following figure.
2. From the pop-up contextual menu, select As loop element to define the selected element as loop. Once done, this selected element is marked with the text: `loop`.

Results

Note:
If you close the Map Editor without having set the required loop element for a given XML tree, its root element will be set automatically as loop element.

Adding a sub-element or an attribute to an XML tree structure

About this task
In the XML tree structure view, you are able to manually add a sub-element or an attribute to the root or to any of the existing elements when needs be.
To do either of these operations, proceed as follows:

Procedure
1. In the XML tree you need to edit, right-click the element to which you need to add a sub-element or an attribute underneath and select Create Sub-Element or Create Attribute according to your purpose.
2. In the pop-up **Create New Element** wizard, type in the name you need to use for the added sub-element or attribute.

3. Click **OK** to validate this creation. The new sub-element or attribute displays in the XML tree structure you are editing.

Deleting an element or an attribute from the XML tree structure

About this task

From an established XML tree, you may need to delete an element or an attribute. To do this, proceed as follows:

Procedure

1. In the XML tree you need to edit, right-click the element or the attribute you need to delete.
2. In the pop-up contextual menu, select **Delete**.
 Then the selected element or attribute is deleted, including all of the sub-elements or the attributes attached to it underneath.

Managing a namespace

When necessary, you are able to set and edit namespace for each of the element in the a created XML tree of the input or the output data flow.

Defining a namespace

About this task

To do this, proceed as follows:

Procedure

1. In the XML tree of the input or the output data flow you need to edit, right click the element for which you need to declare a namespace. For example, in a Customer XML tree of the output flow, you need to set a namespace for the root.

2. In the pop-up contextual menu, select **Set a namespace**. Then the **Namespace dialog** wizard displays.

3. In this wizard, type in the URI you need to use.
4. If you need to set a prefix for this namespace you are editing, select the Prefix check box in this wizard and type in the prefix you need. In this example, we select it and type in `xhtml`.

![Namespace dialog](image)

5. Click OK to validate this declaration.

Modifying the default value of a namespace

About this task

To do this, proceed as follows:

Procedure

1. In the XML tree that the namespace you need to edit belongs to, right-click this namespace to open the contextual menu.

![XML tree with namespace](image)

2. In this menu, select **Change Namespace** to open the corresponding wizard.
3. Type in the new default value you need in this wizard.
4. Click OK to validate this modification.

Deleting a namespace

About this task
To do this, proceed as follows:

Procedure
1. In the XML tree that the namespace you need to edit belongs to, right-click this namespace to open the contextual menu.

2. In this menu, click **Delete** to validate this deletion

Grouping the output data

The **tXMLMap** component uses a group element to group the output data according to a given grouping condition. This allows you to wrap elements matching the same condition with this group element.

To set a group element, two restrictions must be respected:
1. the root node cannot be set as group element;
2. the group element must be the parent of the loop element.

Note:
The option of setting group element is not visible until you have set the loop element; this option is also invisible if an element is not allowed to be set as group element.

Once the group element is set, all of its sub-elements except the loop one are used as conditions to group the output data.

You have to carefully design the XML tree view for the optimized usage of a given group element. For further information about how to use a group element, see **Mapping data using a group element** on Talend Help Center (https://help.talend.com).

Note: **tXMLMap** provides group element and aggregate element to classify data in the XML tree structure. When handling a row of XML data flow, the behavioral difference between them is:
- The group element processes the data always within one single flow.
- The aggregate element splits this flow into separate and complete XML flows.

Setting a group element

About this task
To set a group element, proceed as follows:
Data Integration

Procedure

1. In the XML tree view on the output side of the Map editor, right-click the element you need to set as group element.
2. From the opened contextual menu, select As group element.
 Then this element of selection becomes the group element. The following figure presents an example of an XML tree with the group element.

Revoking a defined group element

About this task

To revoke a defined group element, proceed as follows:

Procedure

1. In the XML tree view on the output side of the Map editor, right-click the element you have defined as group element.
2. From the opened contextual menu, select Remove group element.
 Then the defined group element is revoked.

Aggregating the output data

About this task

With tXMLMap, you can define as many aggregate elements as required in the output XML tree to class the XML data accordingly. Then this component outputs these classes, each as one complete XML flow.

Procedure

1. To define an element as aggregate element, simply right-click this element of interest in the XML tree view on the output side of the Map editor and from the contextual menu, select As aggregate element.
 Then this element becomes the aggregate element. Texts in red are added to it, reading aggregate. The following figure presents an example.
2. To revoke the definition of the aggregate element, simply right-click the defined aggregate element and from the contextual menu, select **Remove aggregate element**.

Results

Note:

To define an element as aggregate element, ensure that this element has no child element and the **All in one** feature is being disabled. The **As aggregate element** option is not available in the contextual menu until both of the conditions are respected. For further information about the **All in one** feature, see **Outputing elements into one document** on page 182.

For an example about how to use the aggregate element with **tXMLMap**, see **Classifying the output data with aggregate element** on Talend Help Center (https://help.talend.com).

Note: **tXMLMap** provides **group element** and **aggregate element** to classify data in the XML tree structure. When handling one row of data (one complete XML flow), the behavioral difference between them is:

- The **group element** processes the data always within one single flow.
- The **aggregate element** splits this flow into separate and complete XML flows.

Defining the output mode

To define the output mode of the document-type data, you are defining whether to put all of the XML elements into one single XML flow and when empty element exist, whether to output them. By doing this, you do not change the structure of the XML tree you have created.

Outputing elements into one document

About this task

Unless you are using the aggregate element which always classifies the output elements and splits an output XML flow, you are able to determine whether an XML flow is output as one single flow or as separate flows, using the **All in one** feature in the **tXMLMap** editor.

To do this, on the output side of the **Map editor**, proceed as follows:
Procedure

1. Click the pincer icon to open the map setting panel. The following figure presents an example.

![Map Setting Panel]

2. Click the **All in one** field and from the drop-down list, select **true** or **false** to decide whether the output XML flow should be one single flow.
 - If you select **true**, the XML data is output all in one single flow. In this example, the single flow reads as follows:

```
Starting job tXMLMap at 10:16 09/11/2011.

[statistics] connecting to socket on port 3643
[statistics] connected
<?xml version="1.0" encoding="UTF-8"?>
<customers><customer id="1"><CustomerName>Griffith Paving and Sealcoating</CustomerName><CustomerAddress>talend@apress91</CustomerAddress><idState>?</idState><LabelState>Connecticut</LabelState><customer id="56"><CustomerName>Glen Oaks Office Supplies</CustomerName><CustomerAddress>1859 Green Bay Rd.</CustomerAddress><idState>?</idState><LabelState>Connecticut</LabelState><customer id="2"><CustomerName>Bill's Dive Shop</CustomerName><CustomerAddress>511 Maple Ave. Apt. 1R</CustomerAddress><idState>35</idState><LabelState>Ohio</LabelState><customer id="51"><CustomerName>DBN Bank</CustomerName><CustomerAddress>456 Crossman Ln.</CustomerAddress><idState>35</idState><LabelState>Ohio</LabelState><customer id="63"><CustomerName>Pivot Point College</CustomerName><CustomerAddress>1547 Knoywood Rd.</CustomerAddress><idState>9</idState><LabelState>Florida</LabelState><customer id="12"></customer></customers>
[statistics] disconnected
Job tXMLMap ended at 10:16 09/11/2011. [exit code=0]
```

The structure of this flow reads:
If you select `false`, the XML data is output in separate flows, each loop being one flow, neither grouped nor aggregated. In this example, these flows read as follows:
Each flow contains one complete XML structure. To take the first flow as example, its structure reads:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<customers>
  <customer id="1">
    <CustomerName>Griffith Paving and Sealcoating</CustomerName>
    <CustomerAddress>1836 Maine St.</CustomerAddress>
    <city>La Crosse</city>
    <state>Wisconsin</state>
    <zip>54601</zip>
  </customer>
  <customer id="2">
    <CustomerName>Glenn Oaks Office Supplies</CustomerName>
    <CustomerAddress>1859 Green Bay Rd.</CustomerAddress>
    <state>Wisconsin</state>
    <city>Green Bay</city>
  </customer>
  <customer id="3">
    <CustomerName>Bill's Dive Shop</CustomerName>
    <CustomerAddress>511 Maple Ave. Apt. 1B</CustomerAddress>
    <city>La Crosse</city>
    <state>Wisconsin</state>
  </customer>
  <customer id="4">
    <CustomerName>DBW Bank</CustomerName>
    <CustomerAddress>456 Green Bay Rd.</CustomerAddress>
    <city>La Crosse</city>
    <state>Wisconsin</state>
  </customer>
  <customer id="5">
    <CustomerName>Pivot Point College</CustomerName>
    <CustomerAddress>1547 Knollwood Rd.</CustomerAddress>
    <city>La Crosse</city>
    <state>Wisconsin</state>
  </customer>
</customers>
```

Results

Note: The All in one feature is disabled if you are using the aggregate element. For further information about the aggregate element, see Aggregating the output data on page 181.

Managing empty element in Map editor

About this task

It may be necessary to create and output empty elements during the process of transforming data into XML flow, such as, when **tXMLMap** works along with **tWriteXMLField** that creates empty elements or when there is no input column associated with certain XML node in the output XML data flow.

By contrast, in some scenarios, you do not need to output the empty element while you have to keep them in the output XML tree for some reasons.
tXMLMap allows you to set the boolean for the creation of empty element. To do this, on the output side of the **Map editor**, perform the following operations:

Procedure

1. Click the pincer icon to open the map setting panel.

2. In the panel, click the **Create empty element** field and from the drop-down list, select **true** or **false** to decide whether to output the empty element.
 - If you select **true**, the empty element is created in the output XML flow and output, for example, `<customer><LabelState/></customer>`.
 - If you select **false**, the empty element is not output.

Defining the sequence of multiple input loops

About this task

If a loop element, or the flat data flow, receives mappings from more than one loop element of the input flow, you need to define the sequence of the input loops. The first loop element of this sequence will be the primary loop, so the transformation process related to this sequence will first loop over this element such that the data outputted will be sorted with regard to its element values.
For example, in this figure, the type element is the primary loop and the outputted data will be sorted by the values of this element.

```xml
<types>
  <type>DELL123</type>
  <manufacture_id>manu_1<manufacture_id>
</types>
<types>
  <type>DELL123</type>
  <manufacture_id>manu_2<manufacture_id>
</types>
<types>
  <type>DELL456</type>
  <manufacture_id>manu_1<manufacture_id>
</types>
<types>
  <type>DELL456</type>
  <manufacture_id>manu_2<manufacture_id>
</types>
<types>
  <type>HP123</type>
  <manufacture_id>manu_1<manufacture_id>
</types>
<types>
  <type>HP123</type>
  <manufacture_id>manu_2<manufacture_id>
</types>
<types>
  <type>HP455</type>
  <manufacture_id>manu_1<manufacture_id>
</types>
<types>
  <type>HP455</type>
  <manufacture_id>manu_2<manufacture_id>
</types>
</manufacture>
```

In this case in which one output loop element receives several input loop elements, a [...] button appears next to this receiving loop element or for the flat data, appears on the head of the table representing the flat data flow. To define the loop sequence, do the following:
Procedure
1. Click this [...] button to open the sequence arrangement window as presented by the figure used earlier in this section.
2. Use the up or down flash button to arrange this sequence.

Editing the XML tree schema

In addition to the Schema editor and the Expression editor views that tMap is also equipped with, a Tree schema editor view is provided in the map editor of tXMLMap for you to edit the XML tree schema of an input or output data flow.

To access this schema editor, click the Tree schema editor tab on the lower part of the map editor.

The left half of this view is used to edit the tree schema of the input flow and the right half to edit the tree schema of the output flow.

The following table presents further information about this schema editor.

<table>
<thead>
<tr>
<th>Metadata</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPath</td>
<td>Use it to display the absolute paths pointing to each element or attribute in a XML tree and edit the name of the corresponding element or attribute.</td>
</tr>
<tr>
<td>Key</td>
<td>Select the corresponding check box if the expression key data should be used to retrieve data through the Join link. If unchecked, the Join relation is disabled.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of data: String, Integer, Document, etc.</td>
</tr>
<tr>
<td>Nullable</td>
<td>Select this check box if the field value could be null.</td>
</tr>
<tr>
<td>Pattern</td>
<td>Define the pattern for the Date data type.</td>
</tr>
</tbody>
</table>

Note:
Input metadata and output metadata are independent from each other. You can, for instance, change the label of a column on the output side without the column label of the input schema being changed.

However, any change made to the metadata are immediately reflected in the corresponding schema on the tXMLMap relevant (Input or Output) area, but also on the schema defined for the component itself on the design workspace.
Big Data

Talend Big Data solutions

Hadoop and Talend Studio

Built on top of Talend data integration solutions, Talend studio enable users to handle big data easily by leveraging Hadoop and its databases or technologies such as HBase, HCatalog, HDFS, Hive, Oozie and Pig.

When IT specialists talk about ‘big data’, they are usually referring to data sets that are so large and complex that they can no longer be processed with conventional data management tools. These huge volumes of data are produced for a variety of reasons. Streams of data can be generated automatically (reports, logs, camera footage, and so on). Or they could be the result of detailed analyses of customer behavior (consumption data), scientific investigations (the Large Hadron Collider is an apt example) or the consolidation of various data sources.

These data repositories, which typically run into petabytes and exabytes, are hard to analyze because conventional database systems simply lack the muscle. Big data has to be analyzed in massively parallel environments where computing power is distributed over thousands of computers and the results are transferred to a central location.

The Hadoop open source platform has emerged as the preferred framework for analyzing big data. This distributed file system splits the information into several data blocks and distributes these blocks across multiple systems in the network (the Hadoop cluster). By distributing computing power, Hadoop also ensures a high degree of availability and redundancy. A ‘master node’ handles file storage as well as requests.

Hadoop is a very powerful computing platform for working with big data. It can accept external requests, distribute them to individual computers in the cluster and execute them in parallel on the individual nodes. The results are fed back to a central location where they can then be analyzed.

However, to reap the benefits of Hadoop, data analysts need a way to load data into Hadoop and subsequently extract it from this open source system. This is where Talend studio comes in.

Talend studio is an easy-to-use graphical development environment that allows for interaction with big data sources and targets without the need to learn and write complicated code. Once a big data connection is configured, the underlying code is automatically generated and can be deployed as a service, executable or stand-alone Job that runs natively on your big data cluster - HDFS, Pig, HCatalog, HBase, Sqoop or Hive.

Talend big data solutions provide comprehensive support for all the major big data platforms. Talend big data components work with leading big data Hadoop distributions, including Cloudera, Greenplum, Hortonworks and MapR. Talend provides out-of-the-box support for a range of big data platforms from the leading appliance vendors including Greenplum, Netezza, Teradata, and Vertica.

Functional architecture of Talend Big Data solutions

The functional architecture of Talend Big Data solutions is an architectural model that identifies the functions, interactions and corresponding IT needs of Talend Big Data solutions.

The overall architecture has been described by isolating specific functionalities in functional blocks.
Three different types of functional blocks are defined:

- at least one Studio where you can design big data Jobs that leverage the Apache Hadoop platform to handle large data sets. These Jobs can be either executed locally or deployed, scheduled and executed on a Hadoop grid via the Oozie workflow scheduler system integrated within the studio.
- a workflow scheduler system integrated within the studio through which you can deploy, schedule, and execute big data Jobs on a Hadoop grid and monitor the execution status and results of the Jobs.
- a Hadoop grid independent of the Talend system to handle large data sets.

Handling Big Data Jobs

Running a Job via Oozie

Your Talend studio provides an Oozie scheduler, a feature that enables you to schedule executions of a Job you have created or run it immediately on a remote Hadoop Distributed File System (HDFS) server, and to monitor the execution status of your Job.

If the Oozie scheduler view is not shown, click Window > Show view and select Talend Oozie from the Show View dialog box to show it in the configuration tab area.

Setting HDFS connection details

Talend Oozie allows you to schedule executions of Jobs you have designed with the Studio.

Before you can run or schedule executions of a Job on an HDFS server, you need first to define the HDFS connection details in the Oozie scheduler view, and specify the path where your Job will be deployed.
Defining HDFS connection details in Oozie scheduler view

Talend Oozie allows you to schedule executions of Jobs you have designed with the Studio.

Before you can run or schedule executions of a Job on an HDFS server, you need first to define the HDFS connection details in the **Oozie scheduler** view, and specify the path where your Job will be deployed.

Procedure

1. Click the **Oozie schedule** view beneath the design workspace.

 Example

 ![Oozie California1](image)

 2. Click **Setting** to open the connection setup dialog box.
3. Set up the Oozie connection.
 - If you have set up the Oozie connection in the Repository as explained in Centralizing an Oozie connection on page 423, you can easily reuse it. To do this, select Repository from the Property type drop-down list, then click the [...] button to open the Repository Content dialog box and select the Oozie connection to be used.
If you have not set up the Oozie connection, fill in the connection information in the corresponding fields as explained in the table below:

<table>
<thead>
<tr>
<th>Field/Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop distribution</td>
<td>Hadoop distribution to be connected to. This distribution hosts the HDFS file system to be used. If you select Custom to connect to a custom Hadoop distribution, then you need to click the [...] button to open the Import custom definition dialog box and from this dialog box, to import the jar files required by that custom distribution. For further information, see Connecting to custom Hadoop distribution on page 392.</td>
</tr>
<tr>
<td>Hadoop version</td>
<td>Version of the Hadoop distribution to be connected to. This list disappears if you select Custom from the Hadoop distribution list.</td>
</tr>
<tr>
<td>Enable kerberos security</td>
<td>If you are accessing the Hadoop cluster running with Kerberos security, select this check box, then, enter the Kerberos principal name for the NameNode in the field displayed. This enables you to use your user name to authenticate against the credentials stored in Kerberos. This check box is available depending on the Hadoop distribution you are connecting to.</td>
</tr>
<tr>
<td>User Name</td>
<td>Login user name.</td>
</tr>
<tr>
<td>Name node end point</td>
<td>URI of the name node, the centerpiece of the HDFS file system.</td>
</tr>
<tr>
<td>Job tracker end point</td>
<td>URI of the Job Tracker node, which farms out MapReduce tasks to specific nodes in the cluster.</td>
</tr>
<tr>
<td>Oozie end point</td>
<td>URI of the Oozie web console, for Job execution monitoring.</td>
</tr>
<tr>
<td>Hadoop Properties</td>
<td>If you need to use custom configuration for the Hadoop of interest, complete this table with the property or properties to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine. For further information about the properties required by Hadoop, see Apache's Hadoop documentation on http://hadoop.apache.org, or the documentation of the Hadoop distribution you need to use.</td>
</tr>
</tbody>
</table>

Note:
Settings defined in this table are effective on a per-Job basis.

Results

Upon defining the deployment path in the Oozie scheduler view, you are ready to schedule executions of your Job, or run it immediately, on the HDFS server.

Running a Job on the HDFS server

Procedure

1. In the Path field on the Oozie scheduler tab, enter the path where your Job will be deployed on the HDFS server.
2. Click the Run button to start Job deployment and execution on the HDFS server.
Results

Your Job data is zipped, sent to, and deployed on the HDFS server based on the server connection settings and automatically executed. Depending on your connectivity condition, this may take some time. The console displays the Job deployment and execution status.

To stop the Job execution before it is completed, click the Kill button.

![Oozie scheduler](image)

Scheduling the executions of a Job

The Oozie scheduler feature integrated in your Talend studio enables you to schedule executions of your Job on the HDFS server.

Thus, your Job will be executed based on the defined frequency within the set time duration.

Procedure

1. In the Path field on the Oozie scheduler tab, enter the path where your Job will be deployed on the HDFS server if the deployment path is not yet defined.
2. Click the Schedule button on the Oozie scheduler tab to open the scheduling setup dialog box.

![Oozie Scheduling](image)

3. Fill in the Frequency field with an integer and select a time unit from the Time Unit list to define the Job execution frequency.
4. Click the [...] button next to the Start Time field to open the Select Date & Time dialog box, select the date, hour, minute, and second values, and click OK to set the Job execution start time. Then, set the Job execution end time in the same way.
5. Click **OK** to close the dialog box and start scheduled executions of your Job. The Job automatically runs based on the defined scheduling parameters. To stop the Job, click **Kill**.

Monitoring Job execution status

Procedure

- To monitor Job execution status and results, click the **Monitor** button on the **Oozie scheduler** tab. The Oozie end point URI opens in your Web browser, displaying the execution information of the Jobs on the HDFS server.
Example

To display the detailed information of a particular Job, click any field of that Job to open a separate page showing the details of the Job.

Example
Mapping Big Data flows

tPigMap interface

tPigMap is an advanced component that maps input flows and output flows being handled in a Pig process (an array of Pig components).

Pig is a platform using a scripting language to express data flows. It programs step-by-step operations to transform data using Pig Latin, name of the language used by Pig.

tPigMap requires tPigLoad to read data from the source system and tPigStoreResult to write data in a given target. Starting from this basic design composed of tPigLoad, tPigMap and tPigStoreResult, you can visually develop a Pig process with a wide range of complexity by using the other Pig components around tPigMap. As these components generate Pig code, the Job developed is thus optimized for the Hadoop environment.

You need to use a map editor to configure tPigMap. This map editor is an "all-in-one" tool allowing you to define all parameters needed to map, transform and route your data flows via a convenient graphical interface.

You can minimize and restore the Map Editor and all tables in the Map Editor using the window icons.

The Map Editor is made of several panels:

- **The Input panel** is the top left panel on the editor. It offers a graphical representation of all (main and lookup) incoming data flows. The data are gathered in various columns of input tables. Note that the table name reflects the main or lookup row from the Job design on the design workspace.
- **The Output panel** is the top right panel on the editor. It allows mapping data and fields from input tables to the appropriate output rows.
• The Search panel is the top central panel. It allows you to search in the editor for columns or expressions that contain the text you enter in the Find field.

• The UDF panel, located beneath the search panel, allows you to define Pig User-Defined Functions (UDFs) to be loaded by the connected input component(s) and applied to specific output data. For more information, see Defining a Pig UDF using the UDF panel on page 204.

• Both bottom panels are the input and output schemas description. The Schema editor tab offers a schema view of all columns of input and output tables in selection in their respective panel.

• Expression editor is the editing tool for all expression keys of input/output data or filtering conditions.

The name of input/output tables in the Map Editor reflects the name of the incoming and outgoing flows (row connections).

This Map Editor stays the way a typical Talend mapping component map editor, such as that of a tMap component, is designed and used. Therefore, in order for you to understand fully how a classic mapping component works, we recommend reading as reference the chapter describing how Talend Studio maps data flows, in Map editor interfaces on page 132.

tPigMap operation

You can map data flows by simply dragging and dropping columns from the Input panel to the Output panel of tPigMap.

More than often, you may need to perform operations of higher complexities, such as editing a filter, setting a join or using a user-defined function for Pig. In that situation, tPigMap provides a rich set of options you can set and generates the corresponding Pig code to meet your needs.

The following sections present those options.

Configuring join operations

On the input side, you can display the panel used for settings the join options by clicking the button on the appropriate table.
Lookup properties

<table>
<thead>
<tr>
<th>Join Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Inner Join</td>
</tr>
<tr>
<td></td>
<td>• Left Outer Join</td>
</tr>
<tr>
<td></td>
<td>• Right Outer Join</td>
</tr>
<tr>
<td></td>
<td>• Full Outer Join</td>
</tr>
<tr>
<td></td>
<td>The default join option is Left Outer Join when you do not activate this option settings panel by displaying it. These options perform the join of two or more flows based on common field values. When more than one lookup tables need join, the main input flow starts the join from the first lookup flow, then uses the result to join the second and so on in the same manner until the last lookup flow is joined.</td>
</tr>
</tbody>
</table>

Join Optimization

<table>
<thead>
<tr>
<th>Join Optimization</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• None</td>
</tr>
<tr>
<td></td>
<td>• Replicated</td>
</tr>
<tr>
<td></td>
<td>• Skewed</td>
</tr>
<tr>
<td></td>
<td>• Merge</td>
</tr>
<tr>
<td></td>
<td>The default join option is None when you do not activate this option settings panel by displaying it. These options are used to perform more efficient join operations. For example, if you are using the parallelism of multiple reduce tasks, the Skewed join can be used to counteract the load imbalance problem if the data to be processed is sufficiently skewed. Each of these options is subject to the constraints explained in Apache’s documentation about Pig Latin.</td>
</tr>
</tbody>
</table>

Custom Partitioner

<table>
<thead>
<tr>
<th>Custom Partitioner</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the Hadoop partitioner you need to use to control the partitioning of the keys of the intermediate map-outputs. For example, enter, in double quotation marks,</td>
</tr>
<tr>
<td></td>
<td><code>org.apache.pig.test.utils.SimpleCustomPartitioner</code></td>
</tr>
<tr>
<td></td>
<td>to use the partitioner SimpleCustomPartitioner. The jar file of this partitioner must have been registered in the Register jar table in the Advanced settings view of the tPigLoad component linked with the tPigMap component to be used.</td>
</tr>
<tr>
<td></td>
<td>For further information about the code of this SimpleCustomPartitioner, see Apache documentation about Pig Latin.</td>
</tr>
</tbody>
</table>

Increase Parallelism

<table>
<thead>
<tr>
<th>Increase Parallelism</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the number of reduce tasks for the Hadoop MapReduce tasks generated by Pig. For further information about the parallelism of reduce tasks, see Apache documentation about Pig Latin.</td>
</tr>
</tbody>
</table>

Catching rejected records

On the output side, the following options become available once you display the panel used for setting output options by clicking the button on the appropriate table.
Output properties	Value
Catch Output Reject | This option, once activated, allows you to catch the records rejected by a filter you have defined in the appropriate area.
Catch Lookup Inner Join Reject | This option, once activated, allows you to catch the records rejected by the inner join operation performed on the input flows.

Editing expressions

On both sides, you can edit all expression keys of input/output data or filtering conditions by using Pig Latin.

This allows you to filter or split a relation on the basis of those conditions. For details about Pig Latin and a relation in Pig, see Apache’s documentation about Pig such as Pig Latin Basics and Pig Latin Reference Manual.

Transformation expressions

You can write the expressions necessary for the data transformation directly in the Expression editor view located in the lower half of the expression editor, or you can open the Expression Builder dialog box where you can write the data transformation expressions.

To use the Expression Builder dialog box, click the button next to the expression you want to open in the tabular panels representing the lookup flow(s) or the output flow(s) of the Map Editor.
The **Expression Builder** dialog box opens on the selected expression.

If you have created any Pig user-defined function (Pig UDF) in the Studio, a **Pig UDF Functions** option appears automatically in the **Categories** list and you can select it to edit the mapping expression you need to use.

You need to use the **Pig UDF** item under the **Code** node of the **Repository** tree to create a Pig UDF function. Although you need to know how to write a Pig function using Pig Latin, a Pig UDF function is created the same way as a Talend routine.
Note that your Repository may look different from this image depending on the license you are using.

For further information about a routine, see What are routines on page 430.

To use the Expression editor:

1. In the lower half of the editor, click the Expression editor tab to open the corresponding view.
2. Click the column you need to set expressions for and edit the expressions in the Expression editor view.

Filtering conditions

If you need to set filtering conditions for an input or output flow, you have to click the button and then edit the expressions in the displayed area or by using the Expression editor view or the Expression Builder dialog box.
Setting up a Pig User-Defined Function

As explained in the section earlier, you can create a Pig User-Defined Function (Pig UDF) and it is automatically added to the Category list in the Expression Builder view.

Procedure

1. Right-click the Pig UDF sub-node under the Code node of the Repository tree and from the contextual menu, select Create Pig UDF. The Create New Pig UDF wizard is displayed.

Example
2. From the Template list, select the type of the Pig UDF function to be created. Based on your choice, the Studio will provide the corresponding template to help the development of the Pig UDF you need.

3. Complete the other fields in the wizard.

4. Click Finish to validate the changes and the Pig UDF template is opened in the workspace.

5. Write your code in the template.

Results

Once done, this Pig UDF will automatically appear in the Categories list in the Expression Builder view of tPigMap and is ready for use.

Defining a Pig UDF using the UDF panel

Using the UDF panel of tPigMap you can easily define Pig UDFs, especially those requiring an alias such as some Apache DataFu Pig functions, to be loaded with the input data.

Procedure

1. From the Define functions table on the Map Editor, click the button to add a row. The Node and Alias fields are automatically filled with the default settings.

Example

<table>
<thead>
<tr>
<th>Define functions</th>
<th>Alias</th>
<th>UDF function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>tPigLoad_1</td>
<td>"define_alias_1"</td>
</tr>
</tbody>
</table>

2. If needed, click in Node field and select from the drop-down list the tPigLoad component you want to use to load the UDF you are defining.

3. If you want your UDF to have another alias than the proposed one, enter your alias in the Alias field, between double quotation marks.

4. Click in the UDF function field and click the button that appears to open the Expression Builder dialog box.

5. Select a UDF category from the Categories list. The Functions list shows all the available functions of the selected category.

6. From the Functions list, double-click the function of interest to add to the Expression area, and click OK to close the dialog box.
Example

![Expression Builder dialog box](image)

Results

The selected function appears in the UDF function field.

<table>
<thead>
<tr>
<th>Define functions</th>
<th>Alias</th>
<th>UDF function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Alias</td>
<td>UDF function</td>
</tr>
<tr>
<td>tPigLoad_1</td>
<td>"define_alias_1"</td>
<td>"datafu.pig.util.AliasableEvalFunc()"</td>
</tr>
</tbody>
</table>

Once you have defined UDFs in this table, the **Define functions** table of the specified **tPigLoad** component is automatically synchronized. Likewise, once you have defined UDFs in a connected **tPigLoad** component, this table is automatically synchronized.

Upon defining a UDF using the UDF panel, you can use it in an expression by:

- dragging and dropping its alias to the target expression field and editing the expression as required
- opening the **Expression Builder** dialog box as detailed in **Editing expressions** on page 200, selecting **User Defined** from the **Category** list, double-clicking the alias of the UDF in the **Functions** list to add it as an expression, and editing the expression as required.

When done, the alias instead of the function itself appears in the expression.
row1.street	street
define_alias_1(row1.traffic)	traffic
row2.event	event
Managing metadata in the Studio

Centralizing metadata for Data Integration

Objectives

The Metadata folder in the Repository tree view stores reusable information on files, databases, and/or systems that you need to create your Jobs.

Various corresponding wizards help you store these pieces of information that can be used later to set the connection parameters of the relevant input or output components and the data description called “schemas” in a centralized manner in Talend Studio.

The procedures of different wizards slightly differ depending on the type of connection chosen.

Click Metadata in the Repository tree view to expand the folder tree. Each of the connection nodes will gather the various connections and schemas you have set up.

Centralizing database metadata

If you often need to connect to database tables of any kind, then you may want to centralize the connection information details in the Metadata folder in the Repository tree view.

This setup procedure is made of two separate but closely related major tasks:

1. Set up a database connection,
2. Retrieve the table schemas.

The sections below describe how to complete the tasks in detail.
Prerequisites: Talend Studio requires specific third-party Java libraries or database drivers (.jar files) to be installed in order to connect to sources or targets. Due to license restrictions, Talend may not be able to ship certain required libraries or drivers; in that situation, the connection wizard to be presented in the following sections displays related information to help you identify and install the libraries or drivers in question.

Setting up a database connection

To create a database connection from scratch, expand Metadata in the Repository tree view, right-click Db Connections and select Create connection from the contextual menu to open the database connection setup wizard.

To centralize database connection parameters you have defined in a Job, click the icon in the Basic settings view of the relevant database component with its Property Type set to Built-in to open the database connection setup wizard.

To modify an existing database connection, right-click the connection item from the Repository tree view, and select Edit connection to open the connection setup wizard.

Then define the general properties and parameters of the connection in the wizard.

Defining general properties

Procedure

1. In the connection setup wizard, give your connection a name in the Name field. This name will appear as the database connection name under the Metadata node of the Repository tree view.
2. Fill in the optional **Purpose** and **Description** fields as required. The information you fill in the **Description** field will appear as a tooltip when you move your mouse pointer over the connection.

3. If needed, set the connection version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

4. If needed, click the **Select** button next to the **Path** field to select a folder under the **Db connections** node to hold your newly created database connection. Note that you cannot select a folder if you are editing an existing database connection, but you can drag and drop a connection to a new folder whenever you want.

5. Click **Next** when completed. The second step requires you to fill in or edit database connection data.

Defining connection parameters

Procedure

1. Select the type of the database to which you want to connect and fill in the connection details. The fields you need to fill vary depending on the database type you select.
Managing metadata in the Studio

New Database Connection on repository - Step 2/2

You must press the Check Button to check the Database Setting.

DB Type: MySQL
Db Version: MySQL 5
Login: root
Password: ********
Server: 192.168.30.162
Port: 3306
Database: talend
Additional parameters: noDatetimeStringSync=true

Check

Database Properties
SQL Syntax: SQL 92
String Quote: "
Null Char: 000

Export as context Revert Context

How to install a driver

< Back Next > Finish Cancel
Note:

When you are creating the database connection of some databases like AS/400, HSQDB, Informix, Microsoft SQL, MySQL, Oracle, SAP HANA, Sybase, or Teradata, you can specify additional connection properties through the **Additional parameters** field in the **Database Settings** area.

In Talend Studio 6.0 and onwards, due to limitations of Java 8, ODBC is no longer supported for Access database connections, and the only supported database driver type is JDBC.

Also due to Java 8 limitations, you cannot create Generic ODBC or Microsoft SQL Server (ODBC) connections in Talend Studio 6.0 and onwards unless you import such connections created in an earlier version of Talend Studio - in that case, you can create Generic ODBC and Microsoft SQL Server (ODBC) connections but they work only with Java 7.

For an MS SQL Server (JDBC) connection, when **Microsoft** is selected from the **Db Version** list, you need to download the Microsoft JDBC driver for SQL Server on Microsoft Download Center, unpack the downloaded zip file, choose a jar in the unzipped folder based on your JRE version, rename the jar to **mssql-jdbc.jar** and install it manually. For more information about choosing the jar, see the System Requirements information on Microsoft Download Center.

You can set up a connection to Oracle using the Wallet by selecting **Oracle Custom** from the **DB Type** drop-down list, then selecting the **Use SSL Encryption** check box and specifying the related properties, including the path to your TrustStore and KeyStore files and the password for each of them, and whether to disable the use of CBC (CipherBlock Chaining).

If you need to connect to Hive, we recommend using one of the **Talend** solutions with Big Data.

Warning:

If you are creating an MSSQL connection, in order to be able to retrieve all table schemas in the database, be sure to:

- enter **dbo** in the **Schema** field if you are connecting to MSSQL 2000,
- remove **dbo** from the **Schema** field if you are connecting to MSSQL 2005/2008.

2. Click **Check** to check your connection.

 If the connection fails, a message box is displayed to indicate this failure and from that message box. From that message box, click the **Details** button to read further information.

 If a missing library or driver (.jar file) has provoked this failure, you can read that from the **Details** panel and then install the specified library or driver.

3. If needed, fill in the database properties information. That is all for the first operation on database connection setup. Click **Finish** to close the connection setup wizard.

 The newly created database connection will be saved under the **Db Connections** node in the **Repository** tree view, and several folders for SQL queries and different types of schemas, such as **Calculation View schemas** (only for SAP HANA), **Synonym schemas** (for Oracle, IBM DB2 and MSSQL), **Table schemas**, and **View schemas** will be created under the database connection node.

 Now you can drag and drop the database connection onto the design workspace as a database component to reuse the defined database connection details in your Job.
Retrieving table schemas

To retrieve table schemas from the database connection you have just set up, right-click the connection item from the Repository tree view, and select Retrieve schema from the contextual menu.

![Schema wizard](image)

Note:

An error message will appear if there are no tables to retrieve from the selected database or if you do not have the correct rights to access this database.

A new wizard opens up where you can specify the filter for searching different database objects such as table, view, synonym (for Oracle, IBM DB2 and MSSQL) and calculation view (only for SAP HANA).
Filtering database objects

In the Select Filter Conditions area, you can filter the database objects using either of the two options: Set the Name Filter or Use the Sql Filter to filter tables based on objects names or using SQL queries respectively.

Filtering database tables based on their names

Procedure

1. In the Select Filter Conditions area, select the Use the Name Filter option.
2. In the Select Types area, select the check box(es) of the database object(s) you want to filter or display.

Note: Available options can vary according to the selected database.

3. In the Set the Name Filter area, click Edit... to open the Edit Filter Name dialog box.
4. Enter the filter you want to use in the dialog box.

Example

For example, if you want to recuperate the database objects which names start with "A", enter the filter A%, or if you want to recuperate all database objects which names end with "type", enter %type as your filter.

5. Click OK to close the dialog box.
6. Click Next to open a new view on the wizard that lists the filtered database objects.

Filtering database objects using an SQL query

Procedure

1. In the Select Filter Conditions area, select the Use Sql Filter option.
2. In the **Set the Sql Filter** field, enter the SQL query you want to use to filter database objects.
3. Click **Next** to open a new view that lists the filtered database objects.

Selecting tables and defining table schemas

About this task

Once you have the filtered list of the database objects, do the following to load the schemas of the desired objects onto your Repository:

Procedure

1. Select one or more database objects on the list and click **Next** to open a new view on the wizard where you can see the schemas of the selected object.
Note:
If no schema is visible on the list, click the **Check connection** button below the list to verify the database connection status.

2. Modify the schemas if needed.
 Make sure the data type in the **Type** column is correctly defined.
 For more information regarding Java data types, including date pattern, see [Java API Specification](#).
 Below are the commonly used **Talend** data types:
 - **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tfFileInputRaw` component by specifying that it has a data type of Object.
 - **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
 - **Document**: a data type that allows processing an entire XML document without regarding to its content.
Managing metadata in the Studio

Warning: If your source database table contains any default value that is a function or an expression rather than a string, be sure to remove the single quotation marks, if any, enclosing the default value in the end schema to avoid unexpected results when creating database tables using this schema. For more information, see Talend Help Center (https://help.talend.com).

Tip: If you find a certain data type of the database not yet supported by Talend, you can edit the mapping file for that database to enable conversion between the database data type and the corresponding Talend data type. For more information, see Type mapping on page 461.

By default, the schema displayed on the **Schema** panel is based on the first table selected in the list of schemas loaded (left panel). You can change the name of the schema and according to your needs. You can also customize the schema structure in the schema panel.

The tool bar allows you to add, remove or move columns in your schema. In addition, you can load an XML schema from a file or export the current schema as XML.

To retrieve a schema based on one of the loaded table schemas, select the DB table schema name in the drop-down list and click **Retrieve schema**. Note that the retrieved schema then overwrites any current schema and does not retain any custom edits.

When done, click **Finish** to complete the database schema creation. All the retrieved schemas will be saved in the corresponding schema folders under the relevant database connection node.

Now you can drag and drop any table schema of the database connection from the **Repository** tree view onto the design workspace as a new database component or onto an existing component to reuse the metadata. For more information, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

Centralizing JDBC metadata

To centralize DB table based metadata into a JDBC connection under the **Metadata** node of the **Repository** tree view, the procedure is made of two separate but closely related tasks:

1. Set up a JDBC connection.
2. Retrieve the table schemas.

The sections below describe how to complete the tasks in detail.

For an example of using a JDBC connection, see Using the JDBC connector to connect to Amazon Athena on Talend Help Center (https://help.talend.com).

Setting up a JDBC connection

Procedure

1. To create a JDBC connection from scratch, expand **Metadata** in the **Repository** tree view, right-click **Db Connections** and select **Create connection** from the contextual menu to open the database connection setup wizard.

 To centralize database connection parameters you have defined in a Job into a JDBC connection, click the icon in the **Basic settings** view of the relevant database component with its **Property Type** set to **Built-In** to open the database connection setup wizard.

 To modify an existing JDBC connection, right-click the connection item from the **Repository** tree view, and select **Edit connection** to open the connection setup wizard.
2. Fill in the schema generic information, such as the connection Name and Description, and then click Next to proceed to define the connection details.
For further information, see the section on defining general properties in Setting up a database connection on page 208.

3. Select JDBC from the DB Type list.

4. Fill in the connection details as follows:
 - Fill in the JDBC URL used to access the database server.
 - In the Drivers table, specify the driver jars needed. To do this, click the [+] button under the table to add as many rows as needed, each row for a driver JAR, then select the cell and click the [...] button at the right side of the cell to open the Module wizard from which you can select the driver JAR of your interest.
 - In the Driver Class field, specify the main class of the driver allowing to communicate with the database.
 - Fill in your database user authentication data in User Id and Password fields.
 - In the Mapping file list, select the mapping that allows the database Type to match the Java type of data on the schema according to the type of database you are connecting to.
Note:
The mapping files are XML files that you can manage via Window > Preferences > Talend > Specific Settings > Metadata of TalendType. For more information, see Accessing mapping files on page 461.

5. Click Test connection to check your connection.
6. Click Finish to close the connection setup wizard.

The newly created JDBC connection is now available in the Repository tree view and it displays several folders including Queries (for the SQL queries you save) and Table schemas that will gather all schemas linked to this DB connection upon schema retrieval.

Retrieving table schemas

Procedure

1. To retrieve table schemas from the database connection you have just set up, right-click the connection item from the Repository tree view and select Retrieve schema from the contextual menu.

A new wizard opens up where you can filter and show different objects (tables, views and synonyms) in your database connection, select tables of interest, and define table schemas.

2. Define a filter to filter databases objects according to your need. For details, see Filtering database objects on page 213.
Click **Next** to open a view that lists your filtered database objects. The list offers all the databases with all their tables present on the database connection that meet your filter conditions.

If no database is visible on the list, click **Check connection** to verify the database connection.

3. Select one or more tables on the list to load them onto your repository file system. Your repository schemas will be based on these tables.

4. Click **Next**. On the next window, four setting panels help you define the schemas to create. Modify the schemas if needed.

Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see *Java API Specification*.

Below are the commonly used **Talend** data types:

- **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a **tFileInputRaw** component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

Warning: If your source database table contains any default value that is a function or an expression rather than a string, be sure to remove the single quotation marks, if any, enclosing the default value in the end schema to avoid unexpected results when creating database tables using this schema. For more information, see Talend Help Center (https://help.talend.com).

Tip: If you find a certain data type of the database not yet supported by **Talend**, you can edit the mapping file for that database to enable conversion between the database data type and the corresponding Talend data type. For more information, see Type mapping on page 461.

By default, the schema displayed on the Schema panel is based on the first table selected in the list of schemas loaded (left panel). You can change the name of the schema and according to your needs, you can also customize the schema structure in the schema panel.

The tool bar allows you to add, remove or move columns in your schema. In addition, you can load an XML schema from a file or export the current schema as XML.

To retrieve a schema based on one of the loaded table schemas, select the database table schema name in the drop-down list and click **Retrieve schema**. Note that the retrieved schema then overwrites any current schema and does not retain any custom edits.

When done, click **Finish** to complete the database schema creation. All the retrieved schemas are displayed in the **Table schemas** sub-folder under the relevant database connection node.

Now you can drag and drop any table schema of the database connection from the **Repository** tree view onto the design workspace as a new database component or onto an existing component to reuse the metadata. For more information, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

Centralizing SAS metadata

If you often need to connect to a remote SAS system, you can centralize the connection information in the **Repository**.
To centralize the metadata information of a SAS connection in the Repository, you need to complete two major tasks:

1. Set up a SAS connection,
2. Retrieve the database schemas.

Prerequisites:

- Talend Studio requires specific third-party Java libraries or database drivers (.jar files) to be installed in order to connect to sources or targets. Due to license restrictions, Talend may not be able to ship certain required libraries or drivers; in that situation, the connection wizard to be presented in the following sections displays related information to help you identify and install the libraries or drivers in question.
- Before carrying on the procedure below to configure your SAS connection, make sure that you retrieve your metadata from the SAS server and export it in XML format.

Setting up a SAS connection

Procedure

1. In the Repository tree view of Talend Studio, right-click DB Connections under the Metadata node and select Create connection from the contextual menu to open the Database Connection wizard.
2. Fill in the general properties of the connection, such as Name and Description and click Next to open a new view on the wizard to define the connection details.
 For further information, see the section on defining general properties in Setting up a database connection on page 208.
3. In the DB Type field of the Database Connection wizard, select SAS and fill in the fields that follow with SAS connection information.
4. If needed, click the **Check** tab to verify if your connection is successful.
5. If needed, define the properties of the database in the corresponding fields in the **Database Properties** area.
6. Click **Finish** to validate your changes and close the wizard.

The newly set connection to the defined database displays under the **DB Connections** folder in the **Repository** tree view. This connection has several sub-folders among which **Table schemas** will group all schemas relative to this connection after schema retrieval.

Retrieving SAS table schemas
Procedure

1. Right-click the SAS connection you created and then select **Retrieve Schema** from the contextual menu.

A new wizard opens up where you can filter and show different objects (tables, views) in your database connection, select tables of interest, and define table schemas.

2. Filter databases objects according to your need, select one or more tables of interest, and modify the table schemas if needed. For details, see **Retrieving table schemas** on page 212.

Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see **Java API Specification**. Below are the commonly used **Talend** data types:

- **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a **tFileInputRaw** component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

When done, you can drag and drop any table schema of the SAS connection from the **Repository** tree view onto the design workspace as a new component or onto an existing component to reuse the metadata. For more information, see **Using centralized metadata in a Job** on page 359 and **Setting a repository schema in a Job** on page 41.

Centralizing File Delimited metadata

If you often need to read data from and/or write data to delimited files, you may want to centralize their metadata in the **Repository** for easy reuse. File Delimited metadata can be used to define the properties of **tFileInputDelimited**, **tFileOutputDelimited**, and **tOutputBulk** components.

Note:

The file schema creation is very similar for all types of file connections: Delimited, Positional, Regex, XML, or LDIF.
Unlike the database connection wizard, the **New Delimited File** wizard gathers both file connection and schema definitions in a four-step procedure.

To create a File Delimited connection from scratch, expand **Metadata** in the **Repository** tree view, right-click **File Delimited** and select **Create file delimited** from the contextual menu to open the file metadata setup wizard.

To centralize a file connection and its schema you have defined in a Job, click the icon in the **Basic settings** view of the relevant component with its **Property Type** set to **Built-in** to open the file metadata setup wizard.

Then define the general properties and file schema in the wizard.

Now you can drag and drop the file connection or any schema of it from the **Repository** tree view onto the design workspace as a new component or onto an existing component to reuse the metadata. For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the **Repository** tree view, and select **Edit file delimited** to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the **Repository** tree view and select **Retrieve Schema** from the contextual menu.

To edit an existing file schema, right-click the schema from the **Repository** tree view and select **Edit Schema** from the contextual menu.

Defining the general properties

Procedure

1. In the file metadata setup wizard, fill in the **Name** field, which is mandatory, and the **Purpose** and **Description** fields if you choose to do so. The information you provide in the **Description** field will appear as a tooltip when you move your mouse pointer over the file connection.
2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see **Version management** on page 463 and **Status management** on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File delimited** node to hold your newly created file connection. Note that you cannot select a folder if you are editing an existing connection, but you can drag and drop it to a new folder whenever you want.

4. Click **Next** when completed with the general properties.

Defining the file path and format

Procedure

1. Specify the full path of the source file in the **File** field, or click the **Browse...** button to search for the file.

Note: The Universal Naming Convention (UNC) path notation is not supported. If your source file is on a LAN host, you can first map the network folder into a local drive.
2. Select the OS **Format** the file was created in. This information is used to prefill subsequent step fields. If the list doesn’t include the appropriate format, ignore it.

3. The **File viewer** gives an instant picture of the file loaded. Check the file consistency, the presence of header and more generally the file structure.

4. Click **Next** to proceed to the next step.

Defining the file parsing parameters

About this task

On this view, you can refine the various settings of your file so that the file schema can be properly retrieved.
Procedure

1. Set the Encoding type, and the Field and Row separators in the File Settings area.

2. Depending on your file type (csv or delimited), set the Escape and Enclosure characters to be used.
3. If the file preview shows a header message, exclude the header from the parsing. Set the number of header rows to be skipped. Also, if you know that the file contains footer information, set the number of footer lines to be ignored.

4. The **Limit of Rows** allows you to restrict the extend of the file being parsed. If needed, select the **Limit** check box and set or select the desired number of rows.

5. In the **File Preview** panel, view the new settings impact.

6. Check the **Set heading row as column names** box to transform the first parsed row as labels for schema columns. Note that the number of header rows to be skipped is then incremented by 1.

7. Click **Refresh** on the preview panel for the settings to take effect and view the result on the viewer.

8. Click **Next** to proceed to the final step to check and customize the generated file schema.

Checking and customizing the file schema

About this task

The last step shows the Delimited File schema generated. You can customize the schema using the toolbar underneath the table.
Procedure

1. If the Delimited file which the schema is based on has been changed, use the **Guess** button to generate again the schema. Note that if you customized the schema, the **Guess** feature does not retain these changes.

2. Modify the schemas if needed. Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see Java API Specification. Below are the commonly used Talend data types:

- **Object**: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tFileInputRaw` component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

3. Click **Finish**. The new schema is displayed under the relevant File Delimited connection node in the Repository tree view.
Centralizing File Positional metadata

If you often need to read data from and/or write data to certain positional files, you may want to centralize their metadata in the Repository for easy reuse. File Positional metadata can be used to define the properties of tFileInputPositional, tFileOutputPositional, and tFileInputMSPositional components.

The New Positional File wizard gathers both file connection and schema definitions in a four-step procedure.

To create a File Positional connection from scratch, expand Metadata in the Repository tree view, right-click File positional and select Create file positional from the contextual menu to open the file metadata setup wizard.

To centralize a file connection and its schema you have defined in a Job, click the icon in the Basic settings view of the relevant component with its Property Type set to Built-in to open the file metadata setup wizard.

Then define the general properties and file schema in the wizard.

The new schema is displayed under the relevant File positional connection node in the Repository tree view. You can drop the defined metadata from the Repository onto the design workspace as a new component or onto an existing component to reuse the metadata. For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the Repository tree view, and select Edit file positional to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the Repository tree view and select Retrieve Schema from the contextual menu.

To edit an existing file schema, right-click the schema from the Repository tree view and select Edit Schema from the contextual menu.

Defining the general properties of the File Positional connection

Procedure

1. In the file metadata setup wizard, fill in the Name field, which is mandatory, and the Purpose and Description fields if you choose to do so. The information you provide in the Description field will appear as a tooltip when you move your mouse pointer over the file connection.
2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a **Repository** item in the **Project Settings** dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File positional** node to hold your newly created file connection. Note that you cannot select a folder if you are editing an existing connection, but you can drag and drop it to a new folder whenever you want.

4. Click **Next** when completed with the general properties.

Defining the file path, format and marker positions

Procedure

1. Specify the full path of the source file in the **File** field, or click the **Browse...** button to search for the file.

 Note: The Universal Naming Convention (UNC) path notation is not supported. If your source file is on a LAN host, you can first map the network folder into a local drive.

2. Select the **Encoding** type and the OS **Format** the file was created in. This information is used to prefill subsequent step fields. If the list doesn’t include the appropriate format, ignore the OS format.
The file is loaded and the File Viewer area shows a file preview and allows you to place your position markers.

3. Click the file preview and set the markers against the ruler to define the file column properties. The orange arrow helps you refine the position.
The **Field Separator** and **Marker Position** fields are automatically filled with a series of figures separated by commas.

The figures in the **Field Separator** are the number of characters between the separators, which represent the lengths of the columns of the loaded file. The asterisk symbol means all remaining characters on the row, starting from the preceding marker position. You can change the figures to specify the column lengths precisely.

The **Marker Position** field shows the exact position of each marker on the ruler, in units of characters. You can change the figures to specify the positions precisely.

To move a marker, press its arrow and drag it to the new position. To remove a marker, press its arrow and drag it towards the ruler until a ✗ icon appears.

4. Click **Next** to continue.

Defining the parsing parameters of your positional file

About this task

On this view, you define the file parsing parameters so that the file schema can be properly retrieved. At this stage, the preview shows the file columns upon the markers' positions.
Procedure

1. Set the Field and Row separators in the **File Settings** area.
 - If needed, change the figures in the **Field Separator** field to specify the column lengths precisely.
 - If the row separator of your file is not the standard EOL (end of line), select **Custom String** from the **Row Separator** list and specify the character string in the **Corresponding Character** field.

2. If your file has any header rows to be excluded from the data content, select the **Header** check box in the **Rows To Skip** area and define the number of rows to be ignored in the corresponding field. Also, if you know that the file contains footer information, select the **Footer** check box and set the number of rows to be ignored.

3. The **Limit of Rows** area allows you to restrict the extend of the file being parsed. If needed, select the **Limit** check box and set or select the desired number of rows.

4. If the file contains column labels, select the **Set heading row as column names** check box to transform the first parsed row to labels for schema columns. Note that the number of header rows to be skipped is then incremented by 1.

5. Click **Refresh Preview** on the **Preview** panel for the settings to take effect and view the result on the viewer.

6. Click **Next** to proceed to the next view to check and customize the generated file schema.
Checking and customizing the schema of your positional file

About this task

Step 4 shows the end schema generated. Note that any character which could be misinterpreted by the program is replaced by neutral characters. Underscores replace asterisks, for example.

Procedure

1. Rename the schema (by default, `metadata`) and edit the schema columns as needed. Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see [Java API Specification](#). Below are the commonly used **Talend** data types:

- **Object**: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tFileInputRaw` component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.
2. To generate the Positional File schema again, click the **Guess** button. Note that, however, any edits to the schema might be lost after “guessing” the file-based schema.

3. When done, click **Finish** to close the wizard.

Centralizing File Regex metadata

Regex file schemas are used for files made of regular expressions, such as log files. If you often need to connect to a regex file, you may want to centralize its connection and schema information in the Repository for easy reuse.

The **New RegEx File** wizard gathers both file connection and schema definitions in a four-step procedure.

Note:

This procedure requires some advanced knowledge on regular expression syntax.

To create a File Regex connection from scratch, expand the **Metadata** node in the **Repository** tree view, right-click **File Regex** and select **Create file regex** from the contextual menu to open the file metadata setup wizard.

To centralize a file connection and its schema you have defined in a Job, click the icon in the **Basic settings** view of the relevant component with its **Property Type** set to **Built-in** to open the file metadata setup wizard.

Then define the general properties and file schema in the wizard.

The new schema is displayed under the relevant **File regex** node in the **Repository** tree view. You can drop the defined metadata from the **Repository** onto the design workspace as a new component or onto an existing component to reuse the metadata. For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the **Repository** tree view, and select **Edit file regex** to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the **Repository** tree view and select **Retrieve Schema** from the contextual menu.

To edit an existing file schema, right-click the schema from the **Repository** tree view and select **Edit Schema** from the contextual menu.

Defining the general properties of the File Regex connection

Procedure

1. In the file metadata setup wizard, fill in the **Name** field, which is mandatory, and the **Purpose** and **Description** fields if you choose to do so. The information you provide in the **Description** field will appear as a tooltip when you move your mouse pointer over the file connection.
2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File regex** node to hold your newly created file connection. Note that you cannot select a folder if you are editing an existing connection, but you can drag and drop it to a new folder whenever you want.

4. Click **Next** when completed with the general properties.

Defining the path and format of your Regex file

Procedure

1. Specify the full path of the source file in the **File** field, or click the **Browse...** button to search for the file.

 Note: The Universal Naming Convention (UNC) path notation is not supported. If your source file is on a LAN host, you can first map the network folder into a local drive.

2. Select the **Encoding** type and the OS **Format** the file was created in. This information is used to prefill subsequent step fields. If the list doesn't include the appropriate format, ignore the OS format.
The file viewer gives an instant picture of the loaded file.

3. Click **Next** to define the schema structure.

Defining the parsing parameters of your Regex file

About this task

On this view, you define the file parsing parameters so that the file schema can be properly retrieved.

Procedure

1. Set the Field and Row separators in the **File Settings** area.
 - If needed, change the figures in the **Field Separator** field to specify the column lengths precisely.
 - If the row separator of your file is not the standard EOL, select **Custom String** from the **Row Separator** list and specify the character string in the **Corresponding Character** field.

2. In the **Regular Expression settings** panel, enter the regular expression to be used to delimit the file.
Warning:
Make sure to include the Regex code in single or double quotes accordingly.

3. If your file has any header rows to be excluded from the data content, select the **Header** check box in the **Rows To Skip** area and define the number of rows to be ignored in the corresponding field. Also, if you know that the file contains footer information, select the **Footer** check box and set the number of rows to be ignored.

4. The **Limit of Rows** allows you to restrict the extend of the file being parsed. If needed, select the **Limit** check box and set or select the desired number of rows.

5. If the file contains column labels, select the **Set heading row as column names** check box to transform the first parsed row to labels for schema columns. Note that the number of header rows to be skipped is then incremented by 1.

6. Then click **Refresh preview** to take the changes into account. The button changes to **Stop** until the preview is refreshed.

7. Click **Next** to proceed to the next view where you can check and customize the generated Regex File schema.

Checking and customizing the schema of your Regex file

Procedure

1. Rename the schema (by default, **metadata**) and edit the schema columns as needed. Make sure the data type in the **Type** column is correctly defined. For more information regarding Java data types, including date pattern, see [Java API Specification](#).

Below are the commonly used **Talend** data types:

- **Object:** a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a **tFileInputRaw** component by specifying that it has a data type of Object.
- **List:** a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
- **Document:** a data type that allows processing an entire XML document without regarding to its content.

2. To retrieve or update the Regex File schema, click **Guess**. Note however that any edits to the schema might be lost after guessing the file based schema.
3. When done, click **Finish** to close the wizard.

Centralizing XML file metadata

If you often need to connect to an XML file, you may want to use the **New Xml File** wizard to centralize your connection to the file and the schema retrieved from it in your Repository for easy reuse.

Depending on the option you select, the wizard helps you create either an input or an output file connection. In a Job, the `tFileInputXML` and `tExtractXMLField` components use the input connection created to read XML files, whereas `tAdvancedFileOutputXML` uses the output schema created to either write an XML file, or to update an existing XML file.

For further information about reading an XML file, see Setting up XML metadata for an input file on page 239.

For further information about writing an XML file, see Setting up XML metadata for an output file on page 249.

To create an XML file connection from scratch, expand the **Metadata** node in the **Repository** tree view, right-click **File XML** and select **Create file XML** from the contextual menu to open the file metadata setup wizard.

To centralize a file connection and its schema you have defined in a Job, click the icon in the **Basic settings** view of the relevant component with its **Property Type** set to **Built-in** to open the file metadata setup wizard.

Then define the general properties and file schema in the wizard.

Setting up XML metadata for an input file

This section describes how to define a file connection and upload an XML schema for an input file. To define and upload an output file, see Setting up XML metadata for an output file on page 249.

Now you can drag and drop the file connection or any schema of it from the **Repository** tree view onto the design workspace as a new `tFileInputXML` or `tExtractXMLField` component or onto an existing component to reuse the metadata. For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the **Repository** tree view, and select **Edit file xml** to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the **Repository** tree view and select **Retrieve Schema** from the contextual menu.

To edit an existing file schema, right-click the schema from the **Repository** tree view and select **Edit Schema** from the contextual menu.

Defining the general properties of the File XML connection

About this task

In this step, the general metadata properties such as the **Name**, **Purpose** and **Description** are set.
Procedure

1. In the file metadata setup wizard, fill in the **Name** field, which is mandatory, and the **Purpose** and **Description** fields if you choose to do so. The information you provide in the **Description** field will appear as a tooltip when you move your mouse pointer over the file connection.

 Note:
 When you enter the general properties of the metadata to be created, you need to define the type of connection as either input or output. It is therefore advisable to enter information that will help you distinguish between your input and output schemas.

2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a **Repository** item in the **Project Settings** dialog box. For more information, see **Version management** on page 463 and **Status management** on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File XML** node to hold your newly created file connection. Note that you cannot select a folder if you are editing an existing connection, but you can drag and drop it to a new folder whenever you want.

4. Click **Next** to select the type of metadata.
Setting the type of metadata (input)

About this task

In this step, the type of metadata is set as either input or output. For this procedure, the metadata of interest is input.

Procedure

1. In the dialog box, select **Input XML**.

2. Click **Next** to upload the input file.

Uploading an XML file

About this task

This procedure describes how to upload an XML file to obtain the XML tree structure. To upload an XML Schema Definition (XSD) file, see Uploading an XSD file on page 242.

The example input XML file used to demonstrate this step contains some contact information, and the structure is like the following:

```xml
<contactInfo>
  <contact>
    <id>1</id>
    <firstName>Michael</firstName>
    <lastName>Jackson</lastName>
    <company>Talend</company>
    <city>Paris</city>
    <phone>2323</phone>
  </contact>
  <contact>
    <id>2</id>
    <firstName>Elisa</firstName>
    <lastName>Black</lastName>
    <company>Talend</company>
    <city>Paris</city>
    <phone>4499</phone>
  </contact>
  ...
</contactInfo>
```
To upload an XML file, do the following:

Procedure

1. Click **Browse**... and browse your directory to the XML file to be uploaded. Alternatively, enter the access path to the file.

 The **Schema Viewer** area displays a preview of the XML structure. You can expand and visualize every level of the file's XML tree structure.

2. Enter the **Encoding** type in the corresponding field if the system does not detect it automatically.
3. In the **Limit** field, enter the number of columns on which the XPath query is to be executed, or 0 if you want to run it against all of the columns.
4. Click **Next** to define the schema parameters.

Uploading an XSD file

About this task

This procedure describes how to upload an XSD file to obtain the XML tree structure. To upload an XML file, see **Uploading an XML file** on page 241.
Managing metadata in the Studio

An XSD file is used to define the schema of XML files. The structure and element data types of the example XML file above can be described using the following XSD, which is used as the example XSD input in this section.

```xml
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
  <xs:element name="contactInfo">
    <xs:complexType>
      <xs:sequence>
        <xs:element maxOccurs="unbounded" ref="contact"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="contact">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="id"/>
        <xs:element ref="firstName"/>  
        <xs:element ref="lastName"/>  
        <xs:element ref="company"/>  
        <xs:element ref="city"/>    
        <xs:element ref="phone"/> 
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="id" type="xs:integer"/>
  <xs:element name="firstName" type="xs:NCName"/>
  <xs:element name="lastName" type="xs:NCName"/>
  <xs:element name="company" type="xs:NCName"/>
  <xs:element name="city" type="xs:NCName"/>
  <xs:element name="phone" type="xs:integer"/>
</xs:schema>
```


Note:

When loading an XSD file,

- the data will be saved in the **Repository**, and therefore the metadata will not be affected by the deletion or displacement of the file.
- you can choose an element as the root of your XML tree.

To load an XSD file, do the following:

Procedure

1. Click **Browse**... and browse your directory to the XSD file to be uploaded. Alternatively, enter the access path to the file.
2. In the dialog box the appears, select an element from the **Root** list as the root of your XML tree, and click **OK**.

The **Schema Viewer** area displays a preview of the XML structure. You can expand and visualize every level of the file's XML tree structure.
3. Enter the **Encoding** type in the corresponding field if the system does not detect it automatically.

4. In the **Limit** field, enter the number of columns on which the XPath query is to be executed, or 0 if you want to run it against all of the columns.

5. Click **Next** to define the schema parameters.

Defining the schema

About this task

In this step, the schema parameters are set.
Managing metadata in the Studio

The schema definition window is composed of four views:

<table>
<thead>
<tr>
<th>View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Schema</td>
<td>Tree view of the XML file.</td>
</tr>
<tr>
<td>Target Schema</td>
<td>Extraction and iteration information.</td>
</tr>
<tr>
<td>Preview</td>
<td>Preview of the target schema, together with the input data of the selected columns displayed in the defined order.</td>
</tr>
<tr>
<td>File Viewer</td>
<td>Preview of the brute data.</td>
</tr>
</tbody>
</table>

Note: The preview functionality is not available if you loaded an XSD file.
First define an XPath loop and the maximum number of times the loop can run. To do so:

Procedure

1. Populate the **XPath loop expression** field with the absolute XPath expression for the node to be iterated upon. There are two ways to do this, either:
 - enter the absolute XPath expression for the node to be iterated upon (Enter the full expression or press **Ctrl+Space** to use the autocompletion list),
 - drop a node from the tree view under **Source schema** onto the **Absolute XPath expression** field.

 An orange arrow links the node to the corresponding expression.

 Note: The **XPath loop expression** field is mandatory.

2. In the **Loop limit** field, specify the maximum number of times the selected node can be iterated, or –1 if you want to run it against all of the rows.

3. Define the fields to be extracted dragging the node(s) of interest from the **Source Schema** tree into the **Relative or absolute XPath expression** fields.

 Note: You can select several nodes to drop on the table by pressing **Ctrl** or **Shift** and clicking the nodes of interest. The arrow linking an individual node selected on the **Source Schema** to the **Fields to extract** table are blue in colour. The other ones are gray.

4. If needed, you can add as many columns to be extracted as necessary, delete columns or change the column order using the toolbar:
5. In the **Column name** fields, enter labels for the columns to be displayed in the schema Preview area.

6. Click **Refresh Preview** to display a preview of the target schema. The fields are consequently displayed in the schema according to the defined order.

 Note: The preview functionality is not available if you loaded an XSD file.

7. Click **Next** to check and edit the end schema.

Finalizing the end schema

About this task

The schema generated displays the columns selected from the XML file and allows you to further define the schema.
Procedure

1. If needed, rename the metadata in the Name field (metadata, by default), add a Comment, and make further modifications, for example:

 - Redefine the columns by editing the relevant fields.
 - Add or delete a column using the + and - buttons.
 - Change the order of the columns using the ▲ and ▼ buttons.

Make sure the data type in the Type column is correctly defined.

For more information regarding Java data types, including date pattern, see Java API Specification. Below are the commonly used Talend data types:

 - Object: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a tFileInputRaw component by specifying that it has a data type of Object.
• List: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
• Document: a data type that allows processing an entire XML document without regarding to its content.

2. If the XML file which the schema is based on has been changed, click the **Guess** button to generate the schema again. Note that if you have customized the schema, the **Guess** feature does not retain these changes.

3. Click **Finish**. The new file connection, along with its schema, appears under the **File XML** node in the **Repository** tree view.

Setting up XML metadata for an output file

This section describes how to define a file connection and upload an XML schema for an output file. To define and upload an XML schema for an input file, see **Setting up XML metadata for an input file** on page 239.

Now you can drag and drop the file connection or any schema of it from the **Repository** tree view onto the design workspace as a new **tAdvancedFileOutputXML** component or onto an existing component to reuse the metadata.

To modify an existing file connection, right-click it from the **Repository** tree view, and select **Edit file xml** to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the **Repository** tree view and select **Retrieve Schema** from the contextual menu.

To edit an existing file schema, right-click the schema from the **Repository** tree view and select **Edit Schema** from the contextual menu.

Defining the general properties of the File XML connection for an output file

About this task

In this step, the general metadata properties such as the **Name**, **Purpose** and **Description** are set.

Procedure

1. In the file metadata setup wizard, fill in the **Name** field, which is mandatory, and the **Purpose** and **Description** fields if you choose to do so. The information you provide in the **Description** field will appear as a tooltip when you move your mouse pointer over the file connection.

Note:

When you enter the general properties of the metadata to be created, you need to define the type of connection as either input or output. It is therefore advisable to enter information that will help you distinguish between your input and output schemas.
2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File XML** node to hold your newly created file connection. Note that you cannot select a folder if you are editing an existing connection, but you can drag and drop it to a new folder whenever you want.

4. Click **Next** to select the type of metadata.

Setting the type of metadata (output)

About this task

In this step, the type of metadata is set as either input or output. For this procedure, the metadata of interest is output.

Procedure

1. From the dialog box, select **Output XML**.
2. Click Next to define the output file, either from an XML or XSD file or from scratch.

Defining the output file structure using an existing XML file

About this task

In this step, you will choose whether to create your file manually or from an existing XML or XSD file. If you choose the Create manually option you will have to configure your schema, source and target columns yourself at step 4 in the wizard. The file will be created in a Job using a an XML output component such as tAdvancedFileOutputXML.

In this procedure, we will create the output file structure by loading an existing XML. To create the output XML structure from an XSD file, see Defining the output file structure using an XSD file on page 253.

To create the output XML structure from an XML file, do the following:

Procedure

1. Select the Create from a file option.

2. Click the Browse... button next to the XML or XSD File field, browse to the access path to the XML file the structure of which is to be applied to the output file, and double-click the file.

The File Viewer area displays a preview of the XML structure, and the File Content area displays a maximum of the first 50 rows of the file.
3. Enter the **Encoding** type in the corresponding field if the system does not detect it automatically.
4. In the **Limit** field, enter the number of columns on which the XPath query is to be executed, or enter 0 if you want it to be run against all of the columns.
5. In the **Output File** field, in the **Output File Path** zone, browse to or enter the path to the output file. If the file does not exist as yet, it will be created during the execution of a Job using a **tAdvancedFileOutputXML** component. If the file already exists, it will be overwritten.
6. Click **Next** to define the schema.
Defining the output file structure using an XSD file

About this task

This procedure describes how to define the output XML file structure from an XSD file. To define the XML structure from an XML file, see Defining the output file structure using an existing XML file on page 251.

Note:

When loading an XSD file,

- the data will be saved in the Repository, and therefore the metadata will not be affected by the deletion or displacement of the file.
- you can choose an element as the root of your XML tree.

To create the output XML structure from an XSD file, do the following:

Procedure

1. Select the Create from a file option.
2. Click the Browse... button next to the XML or XSD File field, browse to the access path to the XSD file the structure of which is to be applied to the output file, and double-click the file.
3. In the dialog box the appears, select an element from the Root list as the root of your XML tree, and click OK.

The File Viewer area displays a preview of the XML structure, and the File Content area displays a maximum of the first 50 rows of the file.
4. Enter the **Encoding** type in the corresponding field if the system does not detect it automatically.

5. In the **Limit** field, enter the number of columns on which the XPath query is to be executed, or enter 0 if you want it to be run against all of the columns.

6. In the **Output File** field, in the **Output File Path** zone, browse to or enter the path to the output file. If the file does not exist as yet, it will be created during the execution of a Job using a `tAdvancedFileOutputXML` component. If the file already exists, it will be overwritten.

7. Click **Next** to define the schema.

Defining the schema of your output file

About this task

Upon completion of the previous operations, the columns in the **Linker Source** area are automatically mapped to the corresponding ones in the **Linker Target** area, as indicated by blue arrow links.
In this step, you need to define the output schema. The following table describes how:

<table>
<thead>
<tr>
<th>To...</th>
<th>Perform the following...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a schema from scratch or edit the source schema columns to pass to the output schema</td>
<td>In the Linker Source area, click the Schema Management button to open the schema editor.</td>
</tr>
<tr>
<td>Define a loop element</td>
<td>In the Linker Target area, right-click the element of interest and select Set As Loop Element from the contextual menu. Note: It is a mandatory operation to define an element to run a loop on.</td>
</tr>
<tr>
<td>Define a group element</td>
<td>In the Linker Target area, right-click the element of interest and select Set As Group Element from the contextual menu. Note: You can set a parent element of the loop element as a group element on the condition that the parent element is not the root of the XML tree.</td>
</tr>
<tr>
<td>To...</td>
<td>Perform the following...</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| Create a child element for an element | In the Linker Target area,
• Right-click the element of interest and select Add Sub-element from the contextual menu, enter a name for the sub-element in the dialog box that appears, and click OK,
• Select the element of interest, click the [+] button at the bottom, select Create as sub-element in the dialog box that appears, and click OK. Then, enter a name for the sub-element in the next dialog box and click OK. |
| Create an attribute for an element | In the Linker Target area,
• Right-click the element of interest and select Add Attribute from the contextual menu, enter a name for the attribute in the dialog box that appears, and click OK,
• Select the element of interest, click the [+] button at the bottom, select Create as attribute in the dialog box that appears, and click OK. Then, enter a name for the attribute in the next dialog box and click OK. |
| Create a name space for an element | In the Linker Target area,
• Right-click the element of interest and select Add Name Space from the contextual menu, enter a name for the name space in the dialog box that appears, and click OK,
• Select the element of interest, click the [+] button at the bottom, select Create as name space in the dialog box that appears, and click OK. Then, enter a name for the name space in the next dialog box and click OK. |
| Delete one or more elements/attributes/name spaces | In the Linker Target area,
• Right-click the element(s)/attribute(s)/name space(s) of interest and select Delete from the contextual menu
• Select the element(s)/attribute(s)/name space(s) of interest and click the x button at the bottom
• Select the element(s)/attribute(s)/name space(s) of interest and press the Delete key.
Note: Deleting an element will also delete its children, if any. |
| Adjust the order of one or more elements | In the Linker Target area, select the element(s) of interest and click the buttons. |
| Set a static value for an element/attribute/name space | In the Linker Target area, right-click the element/attribute/name space of interest and select Set A Fix Value from the contextual menu.
Note:
• The value you set will replace any value retrieved for the corresponding column from the incoming data flow in your Job.
• You can set a static value for a child element of the loop element only, on the condition that the element does not have its own children and does not have a source-target mapping on it. |
| Create a source-target mapping | Select the column of interest in the Linker Source area, drop it onto the node of interest in the Linker Target area, and select Create as sub-element of target node, Create as attribute of target node, or Add linker to target node according to your need in the dialog box that appears, and click OK.
If you choose an option that is not permitted for the target node, you will see a warning message and your operation will fail. |
To... | Perform the following...
--- | ---
Remove a source-target mapping | In the **Linker Target** area, right-click the node of interest and select **Disconnect Linker** from the contextual menu.
Create an XML tree from another XML or XSD file | Right-click any schema item in the **Linker Target** area and select **Import XML Tree** from the contextual menu to load another XML or XSD file. Then, you need to create source-target mappings manually and define the output schema all again.

Note:
You can select and drop several fields at a time, using the **Ctrl** + **Shift** technique to make multiple selections, therefore making mapping faster. You can also make multiple selections for right-click operations.

Procedure

1. In the **Linker Target** area, right-click the element you want to run a loop on and select **Set As Loop Element** from the contextual menu.

2. Define other output file properties as needed, and then click **Next** to view and customize the end schema.

Finalizing the end schema of your output file

About this task

Step 5 of the wizard displays the end schema generated and allows you to further define the schema.
Managing metadata in the Studio

Procedure

1. If needed, rename the metadata in the Name field (metadata, by default), add a Comment, and make further modifications, for example:
 - Redefine the columns by editing the relevant fields.
 - Add or delete a column using the [+] and [x] buttons.
 - Change the order of the columns using the [▲] and [▼] buttons.

2. If the XML file which the schema is based on has been changed, click the Guess button to generate the schema again. Note that if you have customized the schema, the Guess feature does not retain these changes.

3. Click Finish. The new file connection, along with its schema, is displayed under the relevant File XML metadata node in the Repository tree view.

Centralizing File Excel metadata

If you often need to read data from and/or write data to a certain Excel spreadsheet file, you may want to centralize the connection to the file, along with its data structure, in the Repository for easy reuse. This will save you much effort because you will not have to define the metadata details manually in the relevant components each time you use the file.

You can centralize an Excel file connection either from an existing Excel file, or from Excel file property settings defined in a Job.
To centralize a File Excel connection and its schema from an Excel file, expand Metadata in the Repository tree view, right-click File Excel and select Create file Excel from the contextual menu to open the file metadata setup wizard.

To centralize a file connection and its schema you have already defined in a Job, click the icon in the Basic settings view of the relevant component, with its Property Type set to Built-in, to open the file metadata setup wizard.

Then complete these tasks step by step following the wizard:

• Define the general information that will identify the file connection. See Defining the general properties of the File Excel connection on page 259.
• Load the file of interest. See Loading the file on page 260.
• Parse the file to retrieve the file schema. See Parsing the file on page 262.
• Finalize the file schema. See Finalizing the end schema of your Excel file on page 263.

Now you can drag and drop the file connection or the schema of it from the Repository tree view onto the design workspace as a new component or onto an existing component to reuse the metadata.

For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the Repository tree view, and select Edit file Excel to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the Repository tree view and select Retrieve Schema from the contextual menu.

To edit an existing file schema, right-click the schema from the Repository tree view and select Edit Schema from the contextual menu.

Defining the general properties of the File Excel connection

Procedure

1. In the file metadata setup wizard, fill in the Name field, which is mandatory, and the Purpose and Description fields if needed. The information you provide in the Description field will appear as a tooltip when you move your mouse pointer over the file connection.
Managing metadata in the Studio

2. If needed, set the version and status in the Version and Status fields respectively. You can also manage the version and status of a repository item in the Project Settings dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the Select button next to the Path field to select a folder under the File Excel node to hold your newly created file connection.

4. Click Next to proceed with file settings.

Loading the file

Procedure

1. Specify the full path of the source file in the File field, or click the Browse... button to browse to the file.

 Note: The Universal Naming Convention (UNC) path notation is not supported. If your source file is on a LAN host, you can first map the network folder into a local drive.

Skip this step if you are saving an Excel file connection defined in a component because the file path is already filled in the File field.
2. If the uploaded file is an Excel 2007 file, make sure that the Read excel2007 file format(xlsx) check box is selected.

3. By default, user mode is selected. If the uploaded xlsx file is extremely large, select Less memory consumed for large excels(Event mode) from the Generation mode list to prevent out-of-memory errors.

4. In the File viewer and sheets setting area, view the file content and select the sheet or sheets of interest.
 - From the Please select sheet drop-down list, select the sheet you want to view. The preview table displays the content of the selected sheet.
 By default the file preview displays the first sheet of the file.
 - From the Set sheets parameters list, select the check box next to the sheet or sheets you want to upload.
 If you select more than one sheet, the result schema will be the combination of the structures of all the selected sheets.
5. Click Next to continue.

Parsing the file

About this task

In this step of the wizard, you can define the various settings of your file so that the file schema can be properly retrieved.

Procedure

1. Specify the encoding, advanced separator for numbers, and the rows that should be skipped as they are header or footer, according to your Excel file.

![File Settings](image)

2. If needed, fill the First column and Last column fields with integers to set precisely the columns to be read in the file. For example, if you want to skip the first column as it may not contain proper data to be processed, fill the First column field with 2 to set the second column of the file as the first column of the schema.

To retrieve the schema of an Excel file you do not need to parse all the rows of the file, especially when you have uploaded a large file. To limit the number of rows to parse, select the Limit check box in the Limit Of Rows area and set or select the desired number of rows.

![Limit Of Rows](image)

3. If your Excel file has a header row, select the Set heading row as column names check box to take into account the heading names. Click Refresh to view the result of all the previous changes in the preview table.

![Refresh](image)
4. Then click **Next** to continue.

Finalizing the end schema of your Excel file

About this task

The last step of the wizard shows the end schema generated and allows you to customize the schema according to your needs.

Note that any character which could be misinterpreted by the program is replaced by neutral characters. For example, asterisks are replaced with underscores.
Managing metadata in the Studio

Procedure

1. If needed, rename the schema (by default, metadata) and leave a comment.

 Customize the schema if needed: add, remove or move schema columns, export the schema to an XML file, or replace the schema by importing an schema definition XML file using the tool bar. Make sure the data type in the Type column is correctly defined.

 For more information regarding Java data types, including date pattern, see Java API Specification. Below are the commonly used Talend data types:

 - Object: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a tFileInputRaw component by specifying that it has a data type of Object.
 - List: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
 - Document: a data type that allows processing an entire XML document without regarding to its content.

2. If the Excel file which the schema is based on has been changed, click the Guess button to generate the schema again. Note that if you have customized the schema, the Guess feature does not retain these changes.
3. Click Finish. The new schema is displayed under the relevant File Excel connection node in the Repository tree view.

Centralizing File LDIF metadata

About this task

LDIF files are directory files described by attributes. If you often need to read certain LDIF files, you may want to centralize the connections to these LDIF-type files and their attribute descriptions in the Repository for easy reuse. This way you will not have to define the metadata details manually in the relevant components each time you use the files.

You can centralize an LDIF file connection either from an existing LDIF file, or from the LDIF file property settings defined in a Job.

To centralize an LDIF connection and its schema from an LDIF file, expand Metadata in the Repository tree view, right-click File ldif and select Create file ldif from the contextual menu to open the file metadata setup wizard.

To centralize a file connection and its schema you have already defined in a Job, click the icon in the Basic settings view of the relevant component, with its Property Type set to Built-in, to open the file metadata setup wizard.

Then complete these steps following the wizard:

Procedure

1. Fill in the general information in the relevant fields to identify the LDIF file metadata, including Name, Purpose and Description.

 The Name field is required, and the information you provide in the Description field will appear as a tooltip when you move your mouse pointer over the file connection.
2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File ldif** node to hold your newly created file connection. Click **Next** to proceed with file settings.

4. Specify the full path of the source file in the **File** field or click the **Browse...** button to browse to the file.

Note: The Universal Naming Convention (UNC) path notation is not supported. If your source file is on a LAN host, you can first map the network folder into a local drive.

Skip this step if you are saving an LDIF file connection defined in a component because the file path is already filled in the **File** field.
5. Check the first 50 rows of the file in the File Viewer area and click **Next** to continue.

6. From the list of attributes of the loaded file, select the attributes you want to include in the file schema, and click **Refresh Preview** to preview the selected attributes. Then click **Next** to proceed with schema finalization.
7. If needed, customize the generated schema:
 - Rename the schema (by default, metadata) and leave a comment.
 - Add, remove or move schema columns, export the schema to an XML file, or replace the schema by importing an schema definition XML file using the tool bar.
Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see Java API Specification.

Below are the commonly used **Talend** data types:

- **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tFileInputRaw` component by specifying that it has a data type of `Object`.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

8. If the LDIF file on which the schema is based has been changed, click the **Guess** button to generate the schema again. Note that if you have customized the schema, the **Guess** feature does not retain these changes.

9. Click **Finish**. The new schema is displayed under the relevant Ldif file connection node in the **Repository** tree view.

Results

Now you can drag and drop the file connection or the schema of it from the **Repository** tree view onto the design workspace as a new component or onto an existing component to reuse the metadata.
Managing metadata in the Studio

For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the Repository tree view, and select Edit file ldif to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the Repository tree view and select Retrieve Schema from the contextual menu.

To edit an existing file schema, right-click the schema from the Repository tree view and select Edit Schema from the contextual menu.

Centralizing JSON file metadata

If you often need to use a JSON file, you may want to use the New Json File wizard to centralize the file connection, XPath query statements, and data structure in the Repository for easy reuse.

Depending on the option you select, the wizard helps you create either an input or an output file connections. In a Job, the tFileInputJSON and tExtractJSONFields components use the input schema created to read JSON files/fields, whereas tWriteJSONField uses the output schema created to write a JSON field, which can be saved in a file by tFileOutputJSON or extracted by tExtractJSONFields.

For information about setting up input JSON file metadata, see Setting up JSON metadata for an input file on page 270.

For information about setting up output JSON metadata, see Setting up JSON metadata for an output file on page 278.

In the Repository view, expand the Metadata node, right click File JSON, and select Create JSON Schema from the contextual menu to open the New Json File wizard.

Setting up JSON metadata for an input file

This section describes how to define a file connection and upload a JSON schema for an input file. To define an output JSON file connection and schema, see Setting up JSON metadata for an output file on page 278.

Now you can drag and drop the file connection or the schema of it from the Repository tree view onto the design workspace as a new tFileInputJSON or tExtractJSONFields component or onto an existing component to reuse the metadata. For further information about how to use the centralized metadata in a Job, see Using centralized metadata in a Job on page 359 and Setting a repository schema in a Job on page 41.

To modify an existing file connection, right-click it from the Repository tree view, and select Edit JSON to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the Repository tree view and select Retrieve Schema from the contextual menu.

To edit an existing file schema, right-click the schema from the Repository tree view and select Edit Schema from the contextual menu.

Defining the general properties of the File JSON connection

Procedure

1. In the wizard, fill in the general information in the relevant fields to identify the JSON file metadata, including Name, Purpose and Description.
The **Name** field is required, and the information you provide in the **Description** field will appear as a tooltip when you move your mouse pointer over the file connection.

Note:

In this step, it is advisable to enter information that will help you distinguish between your input and output connections, which will be defined in the next step.

2. If needed, set the version and status in the **Version** and **Status** fields respectively.

You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File Json** node to hold your newly created file connection.

4. Click **Next** to select the type of metadata.

Setting the type of metadata and loading the input file

Procedure

1. In the dialog box, select **Input Json** and click **Next** to proceed to the next step of the wizard to load the input file.
2. From the Read By list box, select the type of query to read the source JSON file.
 - **JsonPath**: read the JSON data based on a JsonPath query.
 This is the default and recommended query type to read JSON data in order to gain performance and to avoid problems that you may encounter when reading JSON data based on an XPath query.
 - **Xpath**: read the JSON data based on an XPath query.

3. Click Browse... and browse your directory to the JSON file to be uploaded. Alternatively, enter the full path to the file or the URL that links to the JSON file.

In this example, the input JSON file has the following content:

```
{"movieCollection": [
  {
    "type": "Action Movie",
    "name": "Brave Heart",
    "details": {
      "release": "1995",
      "rating": "5",
      "starring": "Mel Gibson"
    }
  },
  {
    "type": "Action Movie",
    "name": "Edge of Darkness",
    "details": {
      "release": "2010",
      "rating": "5",
      "starring": "Mel Gibson"
    }
  }
]}
```

The **Schema Viewer** area displays a preview of the JSON structure. You can expand and visualize every level of the file’s JSON tree structure.
4. Enter the **Encoding** type in the corresponding field if the system does not detect it automatically.

5. In the **Limit** field, enter the number of levels in the JSON hierarchical depth to which you want to limit the JsonPath or XPath query, 0 for no limits.

 Setting this parameter to a value less than 5 can help prevent the wizard from hanging in case of a large JSON file.

6. Click **Next** to define the schema parameters.

 Defining the schema of your JSON file

 About this task

 In this step, you will set the schema parameters.
The schema definition window is composed of four views:

<table>
<thead>
<tr>
<th>View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Schema</td>
<td>Tree view of the JSON file.</td>
</tr>
<tr>
<td>Target Schema</td>
<td>Extraction and iteration information.</td>
</tr>
</tbody>
</table>
Procedure

1. Populate the **Path loop expression** field with the absolute JsonPath or XPath expression, depending on the type of query you have selected, for the node to be iterated upon. There are two ways to do this, either:
 - enter the absolute JsonPath or XPath expression for the node to be iterated upon (enter the full expression or press `Ctrl+Space` to use the autocompletion list),
 - drag the loop element node from the tree view under **Source schema** into the **Absolute path expression** field of the **Path loop expression** table.

 An orange arrow links the node to the corresponding expression.

 ![Diagram of Path loop expression](image)

 Note: The **Path loop expression** definition is mandatory.

2. In the **Loop limit** field, specify the maximum number of times the selected node can be iterated.

3. Define the fields to be extracted by dragging the nodes from the **Source Schema** tree into the **Relative or absolute path expression** fields of the **Fields to extract** table.

 ![Diagram of Fields to extract](image)
Note: You can select several nodes to drop onto the table by pressing Ctrl or Shift and clicking the nodes of interest.

4. If needed, you can add as many columns to be extracted as necessary, delete columns or change the column order using the toolbar:
 • Add or delete a column using the [+] and x buttons.
 • Change the order of the columns using the up and down buttons.

5. If you want your file schema to have different column names than those retrieved from the input file, enter new names in the corresponding Column name fields.

6. Click Refresh Preview to preview the target schema. The fields are consequently displayed in the schema according to the defined order.

7. Click Next to finalize the schema.

Finalizing the schema of your JSON file

About this task

The last step of the wizard shows the end schema generated and allows you to customize the schema according to your needs.
Procedure

1. If needed, rename the schema (by default, metadata) and leave a comment. Customize the schema if needed: add, remove or move schema columns, export the schema to an XML file, or replace the schema by importing an schema definition XML file using the tool bar. Make sure the data type in the Type column is correctly defined. For more information regarding Java data types, including date pattern, see Java API Specification. Below are the commonly used Talend data types:

- Object: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a tFileInputRaw component by specifying that it has a data type of Object.
- List: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
- Document: a data type that allows processing an entire XML document without regarding to its content.
2. If the JSON file which the schema is based on has been changed, click the **Guess** button to generate the schema again. Note that if you have customized the schema, the **Guess** feature does not retain these changes.

3. Click **Finish**. The new file connection, along with its schema, is displayed under the relevant **File Json** metadata node in the **Repository** tree view.

Setting up JSON metadata for an output file

This section describes how to define JSON metadata for an output file. To define JSON metadata for an input file, see [Setting up JSON metadata for an input file on page 270](#).

Now you can drag and drop the file connection or the schema of it from the **Repository** tree view onto the design workspace as a new **tWriteJSONField** component or onto an existing component to reuse the metadata. For further information about how to use the centralized metadata in a Job, see [Using centralized metadata in a Job on page 359](#) and [Setting a repository schema in a Job on page 41](#).

To modify an existing file connection, right-click it from the **Repository** tree view, and select **Edit JSON** to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the **Repository** tree view and select **Retrieve Schema** from the contextual menu.

To edit an existing file schema, right-click the schema from the **Repository** tree view and select **Edit Schema** from the contextual menu.

Defining general properties of the File JSON connection for an output file

Procedure

1. In the wizard, fill in the general information in the relevant fields to identify the JSON file metadata, including **Name**, **Purpose** and **Description**.

 The **Name** field is required, and the information you provide in the **Description** field will appear as a tooltip when you move your mouse pointer over the file connection.

 Note:

 In this step, it is advisable to enter information that will help you distinguish between your input and output connections, which will be defined in the next step.
2. If needed, set the version and status in the **Version** and **Status** fields respectively. You can also manage the version and status of a repository item in the **Project Settings** dialog box. For more information, see **Version management** on page 463 and **Status management** on page 464 respectively.

3. If needed, click the **Select** button next to the **Path** field to select a folder under the **File Json** node to hold your newly created file connection.

4. Click **Next** to set the type of metadata.

Setting the type of metadata and loading the template JSON file

About this task

In this step, the type of schema is set as either input or output. For this procedure, the schema of interest is output.

Procedure

1. From the dialog box, select **Output JSON** click **Next** to proceed to the next step of the wizard.
2. Choose whether to create the output metadata manually or from an existing JSON file as a template.

If you choose the **Create manually** option you will have to configure the schema and link the source and target columns yourself. The output JSON file/field is created via a Job using a JSON output component such as `tWriteJSONField`.

In this example, we will create the output metadata by loading an existing JSON file. Therefore, select the **Create from a file** option.

3. Click the **Browse...** button next to the **JSON File** field, browse to the access path to the JSON file the structure of which is to be applied to the output JSON file/field, and double-click the file. Alternatively, enter the full path to the file or the URL which links to the template JSON file.

The **File Viewer** area displays a preview of the JSON structure, and the **File Content** area displays a maximum of the first 50 rows of the file.
4. Enter the **Encoding** type in the corresponding field if the system does not detect it automatically.
5. In the **Limit** field, enter the number of levels in the JSON hierarchical depth to which you want to limit the JsonPath or XPath query, 0 for no limits.
 Setting this parameter to a value less than 5 can help prevent the wizard from hanging in case of a large JSON file.
6. Optionally, specify an output file path.
7. Click **Next** to define the schema.

Defining the JSON schema of your output file

About this task

Upon completion of the previous operations, the columns in the **Linker Source** area are automatically mapped to the corresponding ones in the **Linker Target** area, as indicated by blue arrow links.
In this step, you need to define the output schema. The following table describes how:

<table>
<thead>
<tr>
<th>To...</th>
<th>Perform the following...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define a loop element</td>
<td>In the Linker Target area, right-click the element of interest and select Set As Loop Element from the contextual menu.</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
</tr>
<tr>
<td></td>
<td>It is a mandatory operation to define an element to run a loop on.</td>
</tr>
<tr>
<td>Define a group element</td>
<td>In the Linker Target area, right-click the element of interest and select Set As Group Element from the contextual menu.</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
</tr>
<tr>
<td></td>
<td>You can set a parent element of the loop element as a group element on the condition that the parent element is not the root of the JSON tree.</td>
</tr>
<tr>
<td>To...</td>
<td>Perform the following...</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| Create a child element for an element | In the **Linker Target** area,
• Right-click the element of interest and select **Add Sub-element** from the contextual menu, enter a name for the sub-element in the dialog box that appears, and click **OK**.
• Select the element of interest, click the [*] button at the bottom, select **Create as sub-element** in the dialog box that appears, and click **OK**. Then, enter a name for the sub-element in the next dialog box and click **OK**. |
| Create an attribute for an element | In the **Linker Target** area,
• Right-click the element of interest and select **Add Attribute** from the contextual menu, enter a name for the attribute in the dialog box that appears, and click **OK**.
• Select the element of interest, click the [*] button at the bottom, select **Create as attribute** in the dialog box that appears, and click **OK**. Then, enter a name for the attribute in the next dialog box and click **OK**. |
| Create a name space for an element | In the **Linker Target** area,
• Right-click the element of interest and select **Add Name Space** from the contextual menu, enter a name for the name space in the dialog box that appears, and click **OK**.
• Select the element of interest, click the [*] button at the bottom, select **Create as name space** in the dialog box that appears, and click **OK**. Then, enter a name for the name space in the next dialog box and click **OK**. |
| Delete one or more elements/attributes/name spaces | In the **Linker Target** area,
• Right-click the element(s)/attribute(s)/name space(s) of interest and select **Delete** from the contextual menu.
• Select the element(s)/attribute(s)/name space(s) of interest and click the x button at the bottom.
• Select the element(s)/attribute(s)/name space(s) of interest and press the **Delete** key.

Note:
Deleting an element will also delete its children, if any. |
| Adjust the order of one or more elements | In the **Linker Target** area, select the element(s) of interest and click the [▲] and [▼] buttons. |
| Set a static value for an element/attribute/name space | In the **Linker Target** area, right-click the element/attribute/name space of interest and select **Set A Fix Value** from the contextual menu.

Note:
• The value you set will replace any value retrieved for the corresponding column from the incoming data flow in your Job.
• You can set a static value for a child element of the loop element only, on the condition that the element does not have its own children and does not have a source-target mapping on it. |
| Create a source-target mapping | Select the column of interest in the **Linker Source** area, drop it onto the node of interest in the **Linker Target** area, and select **Create as sub-element of target node**, **Create as attribute of target node**, or **Add linker to target node** according to your need in the dialog box that appears, and click **OK**.
If you choose an option that is not permitted for the target node, you will see a warning message and your operation will fail. |
To...	Perform the following...
Remove a source-target mapping | In the **Linker Target** area, right-click the node of interest and select **Disconnect Linker** from the contextual menu.
Create a JSON tree from another JSON file | Right-click any schema item in the **Linker Target** area and select **Import JSON Tree** from the contextual menu to load another JSON file. Then, you need to create source-target mappings manually and define the output schema all again.

Note:
You can select and drop several fields at a time, using the **Ctrl + Shift** technique to make multiple selections, therefore making mapping faster. You can also make multiple selections for right-click operations.

Procedure

1. In the **Linker Target** area, right-click the element you want to set as the loop element and select **Set As Loop Element** from the contextual menu.

 In this example, define a loop to run on the **details** element.

 ![Linker Target example](image)

2. Customize the mappings if needed.
3. Click **Next** to finalize the schema.

Finalizing the end schema JSON of your output file

About this task

The last step of the wizard shows the end schema generated and allows you to customize the schema according to your needs.
Procedure

1. If needed, rename the schema (by default, metadata) and leave a comment.
 Customize the schema if needed: add, remove or move schema columns, export the schema to an XML file, or replace the schema by importing an schema definition XML file using the tool bar. Make sure the data type in the Type column is correctly defined.
 For more information regarding Java data types, including date pattern, see Java API Specification. Below are the commonly used Talend data types:
 - Object: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a tFileInputRaw component by specifying that it has a data type of Object.
 - List: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
 - Document: a data type that allows processing an entire XML document without regarding to its content.

2. If the JSON file which the schema is based on has been changed, click the Guess button to generate the schema again. Note that if you have customized the schema, the Guess feature does not retain these changes.
3. Click Finish. The new file connection, along with its schema, is displayed under the relevant File Json metadata node in the Repository tree view.

Centralizing LDAP connection metadata

If you often need to access an LDAP directory, you want to centralize your LDAP server connection in the Repository tree view for easy reuse.

You can create an LDAP connection either from an accessible LDAP directory, or by saving the LDAP settings defined in a Job.

To create an LDAP connection from an accessible LDAP directory, expand the Metadata node in the Repository tree view, right-click the LDAP tree node, and select Create LDAP schema from the contextual menu to open the Create new LDAP schema wizard.

To centralize an LDAP connection and its schema you have already defined in a Job, click the icon in the Basic settings view of the relevant component, with its Property Type set to Built-In, to open the Create new LDAP schema wizard.

Unlike the DB connection wizard, the LDAP wizard gathers both LDAP server connection and schema definition in a five-step procedure.

Now you can drag and drop the file connection or any schema of it from the Repository tree view onto the design workspace as a new component or onto an existing component to reuse the metadata.

To modify an existing file connection, right-click it from the Repository tree view, and select Edit LDAP schema to open the file metadata setup wizard.

To add a new schema to an existing file connection, right-click the connection from the Repository tree view and select Retrieve Schema from the contextual menu.

To edit an existing file schema, right-click the schema from the Repository tree view and select Edit Schema from the contextual menu.

Defining the general properties of the LDAP connection

Procedure

1. Fill in the general information in the relevant fields to identify the LDAP connection to be created, including Name, Purpose and Description.

 The Name field is required, and the information you provide in the Description field will appear as a tooltip when you move your mouse pointer over the LDAP connection.

2. If needed, set the version and status in the Version and Status fields respectively. You can also manage the version and status of a Repository item in the Project Settings dialog box. For more information, see Version management on page 463 and Status management on page 464 respectively.

3. If needed, click the Select button next to the Path field to select a folder under the LDAP node to hold your newly created LDAP connection.

4. Click Next to define your LDAP server connection details.

Defining the server connection

Procedure

1. Fill the connection details.
Managing metadata in the Studio

Configuring LDAP access parameters

Procedure

1. In this view, set the authentication and data access mode.

2. Then check your connection using **Check Network Parameter** to verify the connection and activate the **Next** button.

3. Click **Next** to continue.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>LDAP Server host name or IP address</td>
</tr>
<tr>
<td>Port</td>
<td>Listening port to the LDAP directory</td>
</tr>
<tr>
<td>Encryption method</td>
<td>LDAP: no encryption is used</td>
</tr>
<tr>
<td></td>
<td>LDAPS: secured LDAP</td>
</tr>
<tr>
<td></td>
<td>TLS: certificate is used</td>
</tr>
</tbody>
</table>

Field

Description

- **Host**: LDAP Server host name or IP address
- **Port**: Listening port to the LDAP directory
- **Encryption method**
 - **LDAP**: no encryption is used
 - **LDAPS**: secured LDAP
 - **TLS**: certificate is used
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Authentication method | **Simple authentication**: requires Authentication Parameters field to be filled in
 | **Anonymous authentication**: does not require authentication parameters |
| Authentication Parameters | **Bind DN or User**: login as expected by the LDAP authentication method
 | **Bind password**: expected password
 | **Save password**: remembers the login details. |
| Get Base DN from Root DSE / Base DN | **Fetch Base DNs** button retrieves the DN automatically from Root. |
| Alias Dereferencing | **Never** allows to improve search performance if you are sure that no aliases is to be dereferenced. By default, Always is to be used. Always: Always dereference aliases |
| | **Never**: Never dereferences aliases.
 | **Searching**: Dereferences aliases only after name resolution.
 | **Finding**: Dereferences aliases only during name resolution. |
2. Click **Check authentication** to verify your access rights.
3. Click **Fetch Base DNs** to retrieve the DN and click the **Next** button to continue.
4. If any third-party libraries required for setting up an LDAP connection are found missing, an external module installation wizard appears. Install the required libraries as guided by the wizard.

Defining the schema of your LDAP directory

Procedure

1. Select the attributes to be included in the schema structure.
 Add a filter if you want selected data only.

2. Click **Refresh Preview** to display the selected column and a sample of the data.
3. Click **Next** to continue.
Finalizing the end schema of your LDAP directory

About this task
The last step shows the LDAP schema generated and allows you to further customize the end schema.

![Create new LDAP schema](image)

Procedure

1. If needed, rename the metadata in the Name field (metadata, by default), add a Comment, and make further modifications, for example:
 - Redefine the columns by editing the relevant fields.
 - Add or delete a column using the + and - buttons.
 - Change the order of the columns using the ↑ and ↓ buttons.

Make sure the data type in the Type column is correctly defined.

For more information regarding Java data types, including date pattern, see Java API Specification.

Below are the commonly used Talend data types:
• Object: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a tFileInputRaw component by specifying that it has a data type of Object.

• List: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.

• Document: a data type that allows processing an entire XML document without regarding to its content.

2. If the LDAP directory which the schema is based on has changed, use the Guess button to generate again the schema. Note that if you customized the schema, your changes will not be retained after the Guess operation.

3. Click Finish. The new schema is displayed under the relevant LDAP connection node in the Repository tree view.

Centralizing Azure Storage metadata

About this task

You can use the Azure Storage metadata wizard provided by Talend Studio to set up quickly a connection to Azure Storage and retrieve the schema of your interested container(s), queue(s), and table(s).

Procedure

1. In the Repository tree view, expand the Metadata node, right-click the Azure Storage tree node, and select Create Azure Storage from the contextual menu to open the Azure Storage wizard.

2. In the Azure Storage Connection Settings dialog box, specify (or update if needed) the values for the properties listed in the following table.
Managing metadata in the Studio

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter the name for the connection to be created.</td>
</tr>
<tr>
<td>Account Name</td>
<td>Enter the name of the storage account you need to access. A storage account name can be found in the Manage Access Keys dashboard of the Microsoft Azure Storage system to be used.</td>
</tr>
<tr>
<td>Account Key</td>
<td>Enter the key associated with the storage account you need to access. Two keys are available for each account and by default, either of them can be used for this access.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Select the protocol for this connection to be created.</td>
</tr>
<tr>
<td>Use Azure Shared Access Signature</td>
<td>Select this check box to use a shared access signature to access the storage resources without need for the account key. In the Azure Shared Access Signature field displayed, enter your shared access signature between double quotation marks. For more information, see Using Shared Access Signatures (SAS).</td>
</tr>
</tbody>
</table>

3. Click **Test connection** to verify the configuration.

 A connection successful dialog box will prompt up if the connection information provided is correct. Then click **OK** to close the dialog box. The **Next** button will be available to use.

4. Click **Next** and in the **Add a new container schema in current connection** dialog box displayed, select your interested container(s) whose schema you want to retrieve.
5. Click Next and in the **Add a new queue schema in current connection** dialog box displayed, select your interested queue(s) whose schema you want to retrieve.

6. Click Next and in the **Add a new table schema in current connection** dialog box displayed, select your interested table(s) whose schema you want to retrieve.
7. Click **Finish** to complete the procedure.

The newly created Azure Storage connection is displayed under the **Azure Storage** node in the **Repository** tree view, along with the schema of your interested container(s), queue(s), and table(s).
You can now add an Azure Storage component onto the design workspace by dragging and dropping the Azure Storage connection created or any container/queue/table retrieved from the Repository view to reuse the connection and/or schema information. For more information about dropping component metadata in the design workspace, see Using centralized metadata in a Job on page 359. For more information about the usage of the Azure Storage components, see the related documentation for the Azure Storage components.

To modify the Azure Storage connection metadata created, right-click the connection node in the Repository tree view and select Edit Azure Storage from the contextual menu to open the metadata setup wizard.

To edit the schema of an interested container/queue/table, right-click the container/queue/table node in the Repository tree view and select Edit Schema from the contextual menu to open the update schema wizard.

Centralizing Google Drive metadata

Talend Studio enables you to centralize the details of your Google Drive connection under the Metadata folder in the Repository tree view. You can then use the established connection to connect to your Google Drive when using the Google Drive components.

Procedure

1. In the Repository tree view, expand the Metadata node, right-click the Google Drive tree node, and select New GoogleDrive Connection from the contextual menu to open the New Google Drive Connection wizard.

2. Specify the values for the properties listed in the following table according to the OAuth method you are using.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name for the Google Drive connection to be created.</td>
</tr>
<tr>
<td>Application Name</td>
<td>The application name required by Google Drive to get access to its APIs.</td>
</tr>
<tr>
<td>OAuth Method</td>
<td>Select an OAuth method used to access Google Drive from the drop-down list.</td>
</tr>
<tr>
<td></td>
<td>• Access Token (deprecated): uses an access token to access Google Drive.</td>
</tr>
<tr>
<td></td>
<td>• Installed Application (Id & Secret): uses the client ID and client secret created through Google API Console to access Google Drive. For more information about this method, see Google Identity Platform > Installed applications.</td>
</tr>
<tr>
<td></td>
<td>• Installed Application (JSON): uses the client secret JSON file that is created through Google API Console and contains the client ID, client secret, and other OAuth 2.0 parameters to access Google Drive.</td>
</tr>
<tr>
<td></td>
<td>• Service Account: uses a service account JSON file created through Google API Console to access Google Drive. For more information about this method, see Google Identity Platform > Service accounts.</td>
</tr>
</tbody>
</table>

For more detailed information about how to access Google Drive using each method, see the description of...
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Token</td>
<td>The access token generated through Google Developers OAuth 2.0 Playground. This property is available only when Access Token is selected from the OAuth Method drop-down list.</td>
</tr>
<tr>
<td>Client ID and Client Secret</td>
<td>The client ID and client secret. These two properties are available only when Installed Application (Id & Secret) is selected from the OAuth Method drop-down list.</td>
</tr>
<tr>
<td>Client Secret JSON</td>
<td>The path to the client secret JSON file. This property is available only when Installed Application (JSON) is selected from the OAuth Method drop-down list.</td>
</tr>
<tr>
<td>Service Account JSON</td>
<td>The path to the service account JSON file. This property is available only when Service Account is selected from the OAuth Method drop-down list.</td>
</tr>
<tr>
<td>DataStore Path</td>
<td>The path to the credential file that stores the refresh token. This property is available only when Installed Application (Id & Secret) or Installed Application (JSON) is selected from the OAuth Method drop-down list.</td>
</tr>
<tr>
<td>Use Proxy</td>
<td>Select this check box when you are working behind a proxy. With this check box selected, you need to specify the value for the following parameters:</td>
</tr>
<tr>
<td></td>
<td>• Host: The IP address of the HTTP proxy server.</td>
</tr>
<tr>
<td></td>
<td>• Port: The port number of the HTTP proxy server.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Select this check box if an SSL connection is used to access Google Drive. With this check box selected, you need to specify the value for the following parameters:</td>
</tr>
<tr>
<td></td>
<td>• Algorithm: The name of the SSL cryptography algorithm.</td>
</tr>
<tr>
<td></td>
<td>• Keystore File: The path to the certificate TrustStore file that contains the list of certificates the client trusts.</td>
</tr>
<tr>
<td></td>
<td>• Password: The password used to check the integrity of the TrustStore data.</td>
</tr>
</tbody>
</table>

3. Click **Test connection** to verify the configuration.

If you are using the OAuth method **Access Token (deprecated)**, **Installed Application (Id & Secret)**, or **Installed Application (JSON)**, a window will pop up in your web browser, asking you to choose your account and allow the access to your Google Drive.
Drive. After the authentication in web browser, a connection successful dialog box will prompt up in Talend Studio.

4. Click **OK** to close the connection successful dialog box and then click **Finish**.

The newly created Google Drive connection is displayed under the **Google Drive** node in the **Repository** tree view.

You can now add a Google Drive component onto the design workspace by dragging and dropping the new Google Drive connection node to reuse the connection information. For more information about dropping component metadata in the design workspace, see Using centralized metadata in a Job on page 359. For more information about the usage of the Google Drive components, see the related documentation for the Google Drive components.

To modify the Google Drive connection metadata created, right-click the connection node in the **Repository** tree view and select **Edit GoogleDrive Connection** from the contextual menu to open the metadata setup wizard.

Centralizing Marketo metadata

About this task

You can use the Marketo metadata wizard provided by Talend Studio to set up quickly a connection to Marketo and retrieve the schema of your interested custom objects using REST API.

Procedure

1. In the **Repository** tree view, expand the **Metadata** node, right-click the **Marketo** tree node, and select **Create Marketo** from the contextual menu to open the **Marketo** wizard.
2. In the Marketo REST Connection Settings dialog box, specify (or update if needed) the values for the properties listed in the following table.
Managing metadata in the Studio

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection name</td>
<td>Enter the name for the connection to be created.</td>
</tr>
<tr>
<td>Endpoint address</td>
<td>Enter the API Endpoint URL of the Marketo Web Service. The API Endpoint URL can be found on the Marketo Admin > Web Services panel.</td>
</tr>
<tr>
<td>Client access ID</td>
<td>Enter the client Id for the access to the Marketo Web Service.</td>
</tr>
<tr>
<td>Secret key</td>
<td>Enter the client secret for the access to the Marketo Web Service.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Enter the timeout value (in milliseconds) for the connection to the Marketo Web Service before terminating the attempt.</td>
</tr>
<tr>
<td>Max reconnection attempts</td>
<td>Enter the maximum number of reconnect attempts to the Marketo Web Service before giving up.</td>
</tr>
<tr>
<td>Attempt interval time</td>
<td>Enter the time period (in milliseconds) between subsequent reconnection attempts.</td>
</tr>
</tbody>
</table>

3. Click **Test connection** to verify the configuration.

 A connection successful dialog box will prompt up if the connection information provided is correct. Then click **OK** to close the dialog box. The **Next** button will be available to use.

4. Click **Next** to go to the next step to select your interested custom objects.
5. Select the custom objects whose schema you want to retrieve, and then click Finish.
The newly created Marketo connection is displayed under the Marketo node in the Repository tree view, along with the schema of your interested custom objects.

You can now add a Marketo component onto the design workspace by dragging and dropping the Marketo connection created or any custom object retrieved from the Repository view to reuse.
the connection and/or schema information. For more information about dropping component metadata in the design workspace, see Using centralized metadata in a Job on page 359. For more information about the usage of the Marketo components, see the related documentation for the Marketo components.

To modify the Marketo connection metadata created, right-click the connection node in the Repository tree view and select Edit Marketo from the contextual menu to open the metadata setup wizard.

To edit the schema of an interested custom object, right-click the custom object node in the Repository tree view and select Edit Schema from the contextual menu to open the update schema wizard.

Centralizing Salesforce metadata

You can use the Salesforce metadata wizard provided by Talend Studio to set up quickly a connection to a Salesforce system so that you can reuse your Salesforce metadata across Jobs.

About this task

You can use the Salesforce metadata wizard provided by Talend Studio to set up quickly a connection to a Salesforce system so that you can reuse your Salesforce metadata across Jobs.

Procedure

1. In the Repository tree view, expand the Metadata node, right-click the Salesforce tree node, and select Create Salesforce from the contextual menu to open the Salesforce wizard.

2. Enter a name for your connection in the Name field, select Basic or OAuth from the Connection type list, and provide the connection details according to the connection type you selected.
With the **Basic** option selected, you need to specify the following details:

- **User Id**: the ID of the user in Salesforce.
- **Password**: the password associated with the user ID.
- **Security Key**: the security token.

With the **OAuth** option selected, you need to specify the following details:

- **Client Id** and **Client Secret**: the OAuth consumer key and consumer secret, which are available in the **OAuth Settings** area of the Connected App that you have created at Salesforce.com.
- **Callback Host** and **Callback Port**: the OAuth authentication callback URL. This URL (both host and port) is defined during the creation of a Connected App and will be shown in the **OAuth Settings** area of the Connected App.
- **Token File**: the path to the token file that stores the refresh token used to get the access token without authorization.

3. If needed, click **Advanced...** to open the **Salesforce Advanced Connection Settings** dialog box, do the following and then click **OK**:

- enter the Salesforce Webservice URL required to connect to the Salesforce system.
- select the **Bulk Connection** check box if you need to use bulk data processing function.
- select the **Use or save the connection session** check box and in the **Session directory** field displayed, specify the path to the connection session file to be saved or used.

This session file can be shared by different Jobs to retrieve a connection session as long as the correct user ID is provided by the component. This way, you do not need to connect to the server to retrieve the session.
When an expired session is detected, if the correct connection information (the user ID, password, and security key) is provided, the component will connect to the server to retrieve the new session information and update the connection session file.

This check box is available only when Basic is selected from the Connection type drop-down list.

- select the Need compression check box to activate SOAP message compression, which can result in increased performance levels.
- select the Trace HTTP message check box to output the HTTP interactions on the console.

 This option is available if the Bulk Connection check box is selected.
- select the Use HTTP Chunked check box to use the HTTP chunked data transfer mechanism.

 This option is not available if the Bulk Connection check box is selected.
- enter the ID of the real user in the Client Id field to differentiate between those who use the same account and password to access the Salesforce website.
- fill the Timeout field with the Salesforce connection timeout value, in milliseconds.
- If needed, select the Use Proxy check box to set the SOCKS type proxy and enter the corresponding setting details. Note that you can also set the HTTP type proxy via Window > Preferences > General > Network Connections.

4. Click Test connection to verify the connection settings, and when the connection check success message appears, click OK for confirmation. Then click Next to go to the next step to select the modules you want to retrieve the schema of.

5. Select the check boxes for the modules of interest and click Finish to retrieve the schemas of the selected modules.

 You can type in filter text to narrow down your selection.
The newly created Salesforce connection is displayed under the Salesforce node in the Repository tree view, along with the schemas of the selected modules.
Results

You can now drag and drop the Salesforce connection or any schema of it from the Repository onto the design workspace, and from the dialog box that opens choose a Salesforce component to use in your Job. You can also drop the Salesforce connection or a schema of it onto an existing component to reuse the connection or metadata details in the component. For more information about dropping component metadata in the design workspace, see Using centralized metadata in a Job on page 359.

To modify the Salesforce metadata entry, right-click it from the Repository tree view, and select Edit Salesforce to open the file metadata setup wizard.

To edit an existing Salesforce schema, right-click the schema from the Repository tree view and select Edit Schema from the contextual menu.

Centralizing Snowflake metadata

About this task

You can use the Snowflake metadata wizard provided by Talend Studio to set up quickly a connection to Snowflake and retrieve the schema of your interested tables.

Note: The Snowflake metadata wizard doesn’t support handling Snowflake views for now.

Procedure

1. In the Repository tree view, expand the Metadata node, right-click the Snowflake tree node, and select Create Snowflake from the contextual menu to open the Snowflake wizard.

2. In the Snowflake Connection Settings dialog box, specify the values for the properties listed in the following table.
Managing metadata in the Studio

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter the name for the connection to be created.</td>
</tr>
<tr>
<td>Account</td>
<td>Enter the account name that has been assigned to you by Snowflake.</td>
</tr>
<tr>
<td>User Id</td>
<td>Enter your login name that has been defined in Snowflake using the LOGIN_NAME parameter of Snowflake. For details, ask the administrator of your Snowflake system.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the password associated with the user ID.</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Enter the name of the Snowflake warehouse to be used. This name is case-sensitive and is normally upper case in Snowflake.</td>
</tr>
<tr>
<td>Schema</td>
<td>Enter the name of the database schema to be used. This name is case-sensitive and is normally upper case in Snowflake.</td>
</tr>
<tr>
<td>Database</td>
<td>Enter the name of the Snowflake database to be used. This name is case-sensitive and is normally upper case in Snowflake.</td>
</tr>
</tbody>
</table>

3. Click Advanced... and in the Snowflake Advanced Connection Settings dialog box displayed, specify or update the values for the advanced properties listed in the following table and click OK to close the dialog box.
Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Timeout</td>
<td>Specify how long to wait for a response when connecting to Snowflake before returning an error.</td>
</tr>
<tr>
<td>Tracing</td>
<td>Select the log level for the Snowflake JDBC driver. If enabled, a standard Java log is generated.</td>
</tr>
<tr>
<td>Role</td>
<td>Enter the default access control role to use to initiate the Snowflake session. This role must already exist and has been granted to the user ID you are using to connect to Snowflake. If this field is left empty, the PUBLIC role is automatically granted. For further information about the Snowflake access control model, see Snowflake documentation at Understanding the Access Control Model.</td>
</tr>
</tbody>
</table>

4. Click **Test connection** to verify the configuration.

 A connection successful dialog box will prompt up if the connection information provided is correct. Then click **OK** to close the dialog box. The **Next** button will be available to use.

5. Click **Next** to go to the next step to select your interested tables.
6. Select the tables whose schema you want to retrieve, and then click **Finish**. The newly created Snowflake connection is displayed under the **Snowflake** node in the **Repository** tree view, along with the schema of your interested tables.
You can now add a Snowflake component onto the design workspace by dragging and dropping the Snowflake connection created or any table retrieved from the Repository view to reuse the connection and/or schema information. For more information about dropping component metadata in the design workspace, see Using centralized metadata in a Job on page 359. For more information about the usage of the Snowflake components, see the related documentation for the Snowflake components.

To modify the Snowflake connection metadata created, right-click the connection node in the Repository tree view and select Edit Snowflake from the contextual menu to open the metadata setup wizard.

To edit the schema of an interested table, right-click the table node in the Repository tree view and select Edit Schema from the contextual menu to open the update schema wizard.

Setting up a generic schema

Talend Studio allows you to create a generic schema to use in your Jobs if none of the specific metadata wizards matches your need or if you do not have any source file to take the schema from.

You can create a generic schema:

- from scratch. For details, see Setting up a generic schema from scratch on page 309,
- from a schema definition XML file. For details, see Setting up a generic schema from an XML file on page 312, and
- from the schema defined in a component. For details, see Saving a component schema as a generic schema on page 314.

To use a generic schema on a component, use either of the following methods:

- Select Repository from the Schema drop-down list in the component Basic settings view.

 Click the [...] button to open the Repository Content dialog box, select the generic schema under the Generic schemas node and click OK.
- Select the metadata node of the generic schema from the Repository tree view and drop it onto the component.

Setting up a generic schema from scratch

About this task

To create a generic schema from scratch, proceed as follows:

Procedure

1. Right-click Generic schemas under the Metadata node in the Repository tree view, and select Create generic schema.
2. In the schema creation wizard that appears, fill in the generic schema properties such as schema **Name** and **Description**. The **Status** field is a customized field. For more information about how to define the field, see **Status settings** on page 470.

Click **Next** to continue.

![Create new generic schema](image)

3. Give a name to the schema or use the default one (metadata) and add a comment if needed. Customize the schema structure in the **Schema** panel according to your needs.

The tool bar allows you to add, remove or move columns in your schema.
Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see Java API Specification.

Below are the commonly used **Talend** data types:

- **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tFileInputRaw` component by specifying that it has a data type of **Object**.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

4. Click **Finish** to complete the generic schema creation. The created schema is displayed under the relevant **Generic schemas** node.
Setting up a generic schema from an XML file

About this task

Warning:
The source XML file from which you can create a generic schema must be an export of schema from the Studio or an XML with the same XML tree structure, not any other kind of XML.

To create a generic schema from a source XML file, proceed as follows:

Procedure

1. Right-click Generic schemas in the Repository tree view, and select Create generic schema from xml.

2. In the dialog box that appears, choose the source XML file from which the schema is taken and click Open.

3. In the schema creation wizard that appears, define the schema Name or use the default one (metadata) and give a Comment if any.

 The schema structure from the source file is displayed in the Schema panel. You can customize the columns in the schema as needed.

 The tool bar allows you to add, remove or move columns in your schema.
Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see [Java API Specification](https://docs.oracle.com/en/java/javase/11/docs/api/index.html).

Below are the commonly used **Talend** data types:

- **Object**: a generic Talend data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a `tFileInputRaw` component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the `xsd:list` element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

4. Click **Finish** to complete the generic schema creation. The created schema is displayed under the relevant **Generic schemas** node.
Managing metadata in the Studio

Saving a component schema as a generic schema

About this task
You can create a generic schema by saving the schema defined in a component. To do so, follow the steps below:

Procedure
1. Open the Basic settings view of the component that has the schema you want to create a generic schema from, and click the [...] button next to Edit schema to open the Schema dialog box.

![Schema of tFileInputDelimited_1](image)

2. Click the floppy disc icon to open the Select folder dialog box.

![Select folder](image)

3. Select a folder if needed, and click OK to close the dialog box and open the Save as generic schema creation wizard.
4. Fill in the Name field (required) and the other fields if needed, and click Finish to save the schema. Then close the Schema dialog box opened from the component Basic settings view. The schema is saved in the selected folder under the Generic schemas node in the Repository tree view.

Centralizing MDM metadata

Talend Studio enables you to centralize the details of one or more MDM connections under the Metadata folder in the Repository tree view. You can then use any of these established connections to connect to the MDM server.

Note:
You can also set up an MDM connection the same way by clicking the icon in the Basic settings view of the tMDMInput and tMDMOutput components.

According to the option you select, the wizard helps you create an input XML, an output XML or a receive XML schema. Later, in a Talend Job, the tMDMInput component uses the defined input schema to read master data stored in XML documents, tMDMOutput uses the defined output schema to either write master data in an XML document on the MDM server, or to update existing XML documents and finally the tMDMReceive component uses the defined XML schema to receive an MDM record in XML from MDM triggers and processes.
Setting up the connection

About this task
To establish an MDM connection, complete the following:

Procedure

1. In the Repository tree view, expand Metadata and right-click Talend MDM.
2. Select Create MDM Connection from the contextual menu.
 The connection wizard is displayed.

3. Fill in the connection properties such as Name, Purpose and Description. The Status field is a customized field that can be defined. For more information, see Status settings on page 470.
4. Click Next to proceed to the next step.
5. From the **Version** list, select the version of the MDM server to which you want to connect.

Note:
The default value in the **Server URL** field varies depending on what you selected in the **Version** list.

6. Fill in the connection details including the authentication information to the MDM server and then click **Check** to check the connection you have created.

A dialog box pops up to show that your connection is successful. Click **OK** to close it.

If needed, you can click **Export as context** to export this **Talend MDM** connection details to a new context group in the Repository or reuse variables of an existing context group to set up your metadata connection. For more information, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

7. Click **Next** to proceed to the next step.
8. From the Data-Model list, select the data model against which the master data is validated.
9. From the Data-Container list, select the data container that holds the master data you want to access.
10. Click Finish to validate your changes and close the dialog box.

The newly created connection is listed under Talend MDM under the Metadata folder in the Repository tree view.

Results

You need now to retrieve the XML schema of the business entities linked to this MDM connection.

Defining MDM schema

Defining Input MDM schema

This section describes how to define and download an input MDM XML schema. To define and download an output MDM XML schema, see Defining output MDM schema on page 324.

Retrieve entity values for an MDM connection

About this task

To set the values to be fetched from one or more entities linked to a specific MDM connection, complete the following:

Procedure

1. In the Repository tree view, expand Metadata and right-click the MDM connection for which you want to retrieve the entity values, and select Retrieve Entity from the contextual menu.
Example

2. In the **MDM Model** dialog box, select the **Input MDM** option in order to download an input XML schema and then click **Next** to proceed to the following step.

Example

3. From the **Entities** field, select the business entity (XML schema) from which you want to retrieve values.
The name is displayed automatically in the **Name** field.

Example

![MDM Entity Window](image)

Note: You are free to enter any text in this field, although you would likely put the name of the entity from which you are retrieving the schema.

4. Click **Next** to proceed to the next step.

The schema of the entity you selected is automatically displayed in the **Source Schema** panel. Here, you can set the parameters to be taken into account for the XML schema definition.
Example

The schema dialog box is divided into four different panels as follows:

<table>
<thead>
<tr>
<th>Panel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Schema</td>
<td>Tree view of the uploaded entity.</td>
</tr>
<tr>
<td>Target schema</td>
<td>Extraction and iteration information.</td>
</tr>
<tr>
<td>Preview</td>
<td>Target schema preview.</td>
</tr>
<tr>
<td>File viewer</td>
<td>Raw data viewer.</td>
</tr>
</tbody>
</table>

5. In the **Xpath loop expression** area, enter the absolute XPath expression leading to the XML structure node on which to apply the iteration.

 Or, drop the node from the source schema to the target schema Xpath field.

 This link is orange in color.

 Note: The **Xpath loop expression** field is compulsory.

6. If required, define a **Loop limit** to restrict the iteration to a number of nodes.
Example

In the capture above, we use Features as the element to loop on because it is repeated within the Product entity as follows:

```xml
<Product>
  <Id>1</Id>
  <Name>Cup</Name>
  <Description/>
  <Features>
    <Feature>Color red</Feature>
    <Feature>Size maxi</Feature>
    ...
  </Features>
</Product>

<Product>
  <Id>2</Id>
  <Name>Cup</Name>
  <Description/>
  <Features>
    <Feature>Color blue</Feature>
    <Feature>Thermos</Feature>
    ...
  </Features>
</Product>
```

By doing so, the tMDMInput component that uses this MDM connection will create a new row for every item with different feature.

7. To define the fields to extract, drop the relevant node from the source schema to the Relative or absolute XPath expression field.
Example

Tip: Use the [+] button to add rows to the table and select as many fields to extract as necessary. Press the Ctrl or the Shift keys for multiple selection of grouped or separate nodes and drop them to the table.

8. If required, enter a name to each of the retrieved columns in the Column name field.

Tip: You can prioritize the order of the fields to extract by selecting the field and using the up and down arrows. The link of the selected field is blue, and all other links are grey.

9. Click Finish to validate your modifications and close the dialog box.

Results
The newly created schema is listed under the corresponding MDM connection in the Repository tree view.

Modifying the created schema

Procedure
1. In the Repository tree view, expand Metadata and Talend MDM and then browse to the schema you want to modify.
2. Right-click the schema name and select Edit Entity from the contextual menu.
 A dialog box is displayed.
3. Modify the schema as needed.

You can change the name of the schema according to your needs, you can also customize the schema structure in the schema panel. The tool bar allows you to add, remove or move columns in your schema.

Make sure the data type in the **Type** column is correctly defined.

For more information regarding Java data types, including date pattern, see Java API Specification.

Below are the commonly used **Talend** data types:

- **Object**: a generic **Talend** data type that allows processing data without regard to its content, for example, a data file not otherwise supported can be processed with a **tFileInputRaw** component by specifying that it has a data type of Object.
- **List**: a space-separated list of primitive type elements in an XML Schema definition, defined using the xsd:list element.
- **Document**: a data type that allows processing an entire XML document without regarding to its content.

4. Click **Finish** to close the dialog box.

Results

The MDM input connection (**tMDMInput**) is now ready to be dropped in any of your Jobs.

Defining output MDM schema

About this task

This section describes how to define and download an output MDM XML schema. To define and download an input MDM XML schema, see Setting up the connection on page 316.

To set the values to be written in one or more entities linked to a specific MDM connection, complete the following:
Procedure

1. In the **Repository** tree view, expand **Metadata** and right-click the MDM connection for which you want to write the entity values, and select **Retrieve Entity** from the contextual menu.

2. In the **MDM Model** dialog box, select the **Output MDM** option in order to define an output XML schema and then click **Next** to proceed to the following step.

Example

3. From the **Entities** field, select the business entity (XML schema) in which you want to write values.

Example
The name is displayed automatically in the **Name** field.

Note: You are free to enter any text in this field, although you would likely put the name of the entity from which you are retrieving the schema.

4. Click **Next** to proceed to the next step.

 Identical schema of the entity you selected is automatically created in the **Linker Target** panel, and columns are automatically mapped from the source to the target panels. The wizard automatically defines the item Id as the looping element. You can always select to loop on another element. Here, you can set the parameters to be taken into account for the XML schema definition.

 Example

 ![MDM Entity](image)

 - Click **Schema Management** to display a dialog box.
 - Do necessary modifications to define the XML schema you want to write in the selected entity.

 Warning: Your **Linker Source** schema must correspond to the **Linker Target** schema, that is to say define the elements in which you want to write values.

 7. Click **OK** to close the dialog box.

 The defined schema is displayed under **Schema list**.
8. In the **Linker Target** panel, right-click the element you want to define as a loop element and select **Set as loop element**. This will restrict the iteration to one or more nodes.

By doing so, the **tMDMOutput** component that uses this MDM connection will create a new row for every item with different feature.
Example

Tip: You can prioritize the order of the fields to write by selecting the field and using the up and down arrows.

9. Click Finish to validate your modifications and close the dialog box.

Results

The newly created schema is listed under the corresponding MDM connection in the Repository tree view. You can modify the created schema according to your needs and drop the connection as a tMDMOutput in any of your Jobs.

For more information on how to modify the schema, see Modifying the created schema on page 323.
Defining Receive MDM schema

Before you begin

This section describes how to define a receive MDM XML schema based on the MDM connection.

To set the XML schema you want to receive in accordance with a specific MDM connection, complete the following:

Procedure

1. In the Repository tree view, expand Metadata and right-click the MDM connection for which you want to retrieve the entity values, and select Retrieve Entity from the contextual menu.
2. In the MDM Model dialog box, select the Receive MDM option in order to define a receive XML schema and then click Next to proceed to the following step.

Example

3. From the Entities field, select the business entity (XML schema) according to which you want to receive the XML schema.
 The name displays automatically in the Name field.
Note: You can enter any text in this field, although you would likely put the name of the entity according to which you want to receive the XML schema.

4. Click **Next** to proceed to the next step.

The schema of the entity you selected display in the **Source Schema** panel. Here, you can set the parameters to be taken into account for the XML schema definition.
Example

The schema dialog box is divided into four different panels as follows:

<table>
<thead>
<tr>
<th>Panel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Schema</td>
<td>Tree view of the uploaded entity.</td>
</tr>
<tr>
<td>Target schema</td>
<td>Extraction and iteration information.</td>
</tr>
<tr>
<td>Preview</td>
<td>Target schema preview.</td>
</tr>
<tr>
<td>File viewer</td>
<td>Raw data viewer.</td>
</tr>
</tbody>
</table>

5. In the **XPath loop expression** area, enter the absolute XPath expression leading to the XML structure node on which to apply the iteration. Or, drop the node from the source schema to the target schema XPath field. This link is orange in color.

 Note: The **XPath loop expression** field is compulsory.

6. If required, define a **Loop limit** to restrict the iteration to one or more nodes.
Example

In the above capture, we use Features as the element to loop on because it is repeated within the Product entity as the following:

```xml
<Product>
  <Id>1</Id>
  <Name>Cup</Name>
  <Description/>
  <Features>
    <Feature>Color red</Feature>
    <Feature>Size maxi</Feature>
    ...
  </Features>
</Product>

<Product>
  <Id>2</Id>
  <Name>Cup</Name>
  <Description/>
  <Features>
    <Feature>Color blue</Feature>
    <Feature>Thermos</Feature>
    ...
  </Features>
</Product>
```

By doing so, the tMDMReceive component that uses this MDM connection will create a new row for every item with different feature.

7. To define the fields to receive, drop the relevant node from the source schema to the Relative or absolute XPath expression field.
Tip: Use the plus sign to add rows to the table and select as many fields to extract as necessary. Press the Ctrl or the Shift keys for multiple selection of grouped or separate nodes and drop them to the table.

8. If required, enter a name to each of the received columns in the Column name field.

Tip: You can prioritize the order of the fields you want to receive by selecting the field and using the up and down arrows. The link of the selected field is blue, and all other links are grey.

9. Click Finish to validate your modifications and close the dialog box.

Results

The newly created schema is listed under the corresponding MDM connection in the Repository tree view. You can modify the created schema according to your needs and drop the connection as a tMDMReceive in any of your Jobs.

For more information on how to modify the schema, see Modifying the created schema on page 323.

Centralizing Web Service metadata

If you often need to visit a Web Service from your Talend Studio you can save your Web Service connections in the Repository.

The Web Service schema wizard enables you to create either a simple schema (Simple WSDL) or an advanced schema (Advanced WebService), according to your needs.
Note:

In step 1, you must enter the schema metadata before choosing whether to create a simple or an advanced schema in step 2. It is therefore important to enter metadata information which will help you to differentiate between your different schema types in the future.

To create a simple schema, see Setting up a simple schema on page 334.

To create an advanced schema, see Setting up an advanced schema on page 339.

Setting up a simple schema

This section describes how to define a simple Web Service schema (Simple WSDL). For information about how to define an Advanced Web Service schema, see Setting up an advanced schema on page 339.

Defining general properties of the simple Web Service schema

Procedure

1. In the **Repository**, expand the **Metadata** node.
2. Right-click **Web Service** and select **Create WSDL schema** from the context menu list.

![Create WSDL schema](image)

3. Enter the generic schema information such as its **Name** and **Description**.
4. Click **Next** to select the schema type in step 2.

Selecting the type of schema (Simple)

About this task

In this step, you need to indicate whether you want to create a simple or an advanced schema. In this example, a simple schema is created.

Procedure

1. In the dialog box, select the **Simple WSDL** option.
2. Click **Next** to continue.

Specifying the URI and method

About this task

This step involves the definition of the URI and other parameters required to obtain the desired values.
In the **Web Service Parameter** zone:

Procedure

1. Enter the URI which will transmit the desired values, in the **WSDL** field, `http://www.webservicex.net/country.asmx?wsdl` in this example.
2. If necessary, select the **Need authentication?** check box and then enter your authentication information in the **User** and **Password** fields.
3. If you use an http proxy, select the **Use http proxy** check box and enter the information required in the **host**, **Port**, **user** and **password** fields.
4. Enter the **Method** name in the corresponding field, `GetCountryByCountryCode` in this example.
5. In the **Value** table, **Add** or **Remove** values as desired, using the corresponding buttons.
6. Click **Refresh Preview** to check that the parameters have been entered correctly.
In the **Preview** tab, the values to be transmitted by the Web Service method are displayed, based on the parameters entered.

Finalizing the end schema (Simple WSDL)

About this task

You can modify the schema name (**metadata**, by default) and modify the schema itself using the tool bar.
Managing metadata in the Studio

Procedure

1. Add or delete columns using the and buttons.
2. Modify the order of the columns using the and buttons.
3. Click Finish.

The new schema is added to the Repository under the Web Service node. You can now drop it onto the design workspace as a tWebServiceInput component in your Job.

Setting up an advanced schema

This section describes how to define an Advanced WebService schema. For information about how to define a Simple WSDL schema, see Setting up a simple schema on page 334.

Next, you need to define the input and output schemas and schema-parameter mappings in the Input mapping and Output mapping tabs.

Note:
Depending on the type of the output, you can choose to normalize or denormalize the results by clicking the Normalize and Denormalize buttons.

Defining general properties of the advanced Web Service schema

Procedure

1. In the Repository view, expand the metadata node.
2. Right-click Web Service and select Create WSDL schema from the context menu list.
3. Enter the generic schema information, such as its Name and Description.
4. Click **Next** to select the schema type in step 2.

Selecting the type of schema (Advanced)

About this task

In this step, you must indicate whether you want to create a **Simple** or an **Advanced** schema. In this example, an **Advanced** schema is created.

Procedure

1. In the dialog box, select the **Advanced WebService** option.
2. Click **Next** to define precise Web Service parameters.

Defining the port name and operation

Procedure

1. Type in the URI of the Web Service WSDL file manually by typing in the **WSDL** field, or click the **Browse...** button to browse your directory if your WSDL is stored locally.

2. Click the **Refresh** button to retrieve the list of port names and operations available.
3. Select the port name to be used, in the Port Name zone, `countrySoap12` in this example.

4. Select the operation to be carried out in the Operation zone.

 In this example, select `GetCountryByCountryCode(parameters):string` to retrieve the country name for a given country code.

Defining the input schemas and mappings

About this task

To define the input schema and mappings, do the following:

Procedure

1. Click the Input mapping tab to define the input schema and set the parameters required to execute the operation.

2. In the table to the right, select the parameters row and click the `[+]` button to open the ParameterTree dialog box.
3. Select the parameter you want to use and click OK to close the dialog box. A new row appears showing the parameter you added, CountryCode in this example.

4. In the table to the left, click the Schema Management button to open the Schema dialog box.

5. Define the input schema. In this example, the schema has only one column: CountryCode.

6. Click OK to validate this addition and close the dialog box.

7. Create mappings between schema columns and parameters. In this example, drop the CountryCode column from the left table onto the parameters.CountryCode row to the right. A red line shows that the column is mapped.
Defining the output schemas and mappings

About this task
To define the output schema and mappings, proceed as follows:

Procedure
1. Click the Output mapping tab to define the output schema and set its parameters.
2. In the table to the left, select the parameter row and click the [+] button to add a parameter. The ParameterTree dialog box opens.
3. Select the parameter and click **OK** to close the dialog box.
 A new row appears showing the parameter you added, `GetCountryByCountryCodeResult` in this example.

4. In the table to the right, click [...] to open the **Schema** dialog box.

5. Define the output schema.
 In this example, the schema has only one column: `Result`.

6. Click **OK** to validate your addition and close the dialog box.

7. Create output parameter-schema mappings.
 In this example, drop the `parameters.GetCountryByCountyCodeResult` row from the table to the left onto the `Result` column to the right.
8. Click **Next** to finalize the schema.

Finalizing the end schema (Advanced WebService)

About this task

In this step the wizard displays the output schema generated.
Managing metadata in the Studio

You can customize the metadata by changing or adding information in the **Name** and **Comment** fields and make further modifications using the toolbar, for example:

Procedure

1. Add or delete columns using the ![+] and ![-] buttons.
2. Change the column order by clicking the ![↑] and ![↓] arrows.
3. Click **Finish** to finalize your advanced schema.

The new schema is added to the **Repository** under the corresponding Web Service node. You can now drop it onto the design workspace as a **tWebService** component in your Job.

Centralizing an FTP connection

If you need to connect to an FTP server regularly, you can centralize the connection information under the **Metadata** node in the **Repository** view.

All of the connections created appear under the FTP server connection node, in the **Repository** view.

You can drop the connection metadata from the **Repository** onto the design workspace. A dialog box opens in which you can choose the component to be used in your Job.
For further information about how to drop metadata onto the workspace, see Using centralized metadata in a Job on page 359.

Defining the general properties of the connection FTP

About this task

To create a connection to an FTP server, follow the steps below:

Procedure

1. Expand the **Metadata** node in the **Repository** tree view.

2. Right-click **FTP** and select **Create FTP** from the context menu.

 The connection wizard opens:

 ![Create FTP Wizard](image)

3. Enter the generic schema information such as its **Name** and **Description**.
Note:
The status field is a customized field which can be defined in the Preferences dialog box (Window > Preferences). For further information about setting preferences, see Setting Talend Studio preferences on page 485.

4. When you have finished, click Next to enter the FTP server connection information.

Connecting to an FTP server

About this task

In this step we shall define the connection information and parameters.

Procedure

1. Enter your Username and Password in the corresponding fields.

2. In the Host field, enter the name of your FTP server host.

3. Enter the Port number in the corresponding field.

4. Select the Encoding type from the list.

5. From the Connection Model list, select the connection model you want to use:
 - Select Passive if you want the FTP server to choose the port connection to be used for data transfer.
 - Select Active if you want to choose the port yourself.
6. In the **Parameter** area, select a setting for FTP server usage. For standard usage, there is no need to select an option.
 - Select the **SFTP Support** check box to use the SSH security protocol to protect server communications.
 - An **Authentication method** appears. Select **Public key** or **Password** according to what you use.
 - Select the **FTPs Support** check box to protect server communication with the SSL security protocol.
 - Select the **Use Socks Proxy** check box if you want to use this option, then enter the proxy information (the host name, port number, username and password).

7. Click **Finish** to close the wizard.

Working with Hierarchical Mapper

Talend Studio enables you to access structures, maps and namespace containers created in the **Mapping** perspective by expanding the **Hierarchical Mapper** node, which is located under the **Metadata** folder in the **Repository** tree view in the **Integration** perspective.

For more information on working with these elements, see the Talend Data Mapper User Guide.

Exporting metadata as context and reusing context parameters to set up a connection

If the **Export as context** option is available for a metadata connection, you can export the connection details to a new context group in the Repository for reuse in other connections or across different Jobs, or reuse variables of an existing context group to set up your metadata connection.

Exporting connection details as context variables

About this task

To export connection details as context variables in a new context group in the Repository, follow the steps below:

Procedure

1. Upon creating or editing a metadata connection in the wizard, click **Export as context**.
2. In the **Create / Reuse a context group** wizard that opens, select **Create a new repository context** and click **Next**.
3. Type in a name for the context group to be created, and add any general information such as a description if required.

The name of the Metadata entry is proposed by the wizard as the context group name, and the information you provide in the **Description** field will appear as a tooltip when you move your mouse over the context group in the Repository.
4. Click **Next** to create and view the context group, or click **Finish** to complete context creation and return to the connection wizard directly. In this example, click **Next**.

5. Check the context group generation result.

 To edit the context variables, go to the **Contexts** node of the Repository, right-click the newly created context group, and select **Edit context group** to open the **Create / Edit a context group** wizard after the connection wizard is closed.

 To edit the default context, or add new contexts, click the [+] button at the upper right corner of the wizard.

 To add a new context variable, click the [+] button at the bottom of the wizard.

 For more information on handling contexts and variables, see **Using contexts and variables** on page 66.
6. Click **Finish** to complete context creation and return to the connection wizard.
The relevant connection details fields in the wizard are set with the context variables. To unset the connection details, click the Revert Context button.

Using variables of an existing context group to set up a connection

About this task

To use variables of an existing context group centrally stored in the Repository to set up a connection, follow the steps below:

Procedure

1. When creating or editing a metadata connection in the wizard, click Export as context.
2. In the Create / Reuse a context group wizard that opens, select Reuse an existing repository context and click Next.
3. Select a context group from the list and click **Next**.

4. For each variable, select the corresponding field of the connection details, and then click **Next** to view and edit the context variables, or click **Finish** to show the connection setup result directly.
In this example, click **Next**.

5. Edit the contexts and/or context variables if needed. If you make any changes, your centralized context group will be updated automatically.

 For more information on handling contexts and variables, see *Using contexts and variables* on page 66.

6. Click **Finish** to validate context reuse and return to the connection wizard.
Managing metadata in the Studio

The relevant connection details fields in the wizard are set with the context variables. To unset the connection details, click the **Revert Context** button.

Using centralized metadata in a Job

About this task

For recurrent use of files and database connections in various Jobs, we recommend you to store the connection and schema metadata in the **Repository** tree view under the **Metadata** node. Different
folders under the **Metadata** node will group the established connections including those to databases, files and systems.

Different wizards will help you centralize connection and schema metadata in the **Repository** tree view. For more information about the **Metadata Manager** wizards, see Centralizing database metadata on page 207.

Once the relevant metadata is stored under the **Metadata** node, you will be able to drop the corresponding components directly onto the design workspace.

Procedure

1. In the **Repository** tree view of the **Integration** perspective, expand **Metadata** and the folder holding the connection you want to use in your Job.
2. Drop the relevant connection or schema onto the design workspace.

A dialog box prompts you to select the component you want to use among those offered.
3. Select the component and then click OK. The selected component displays on the design workspace.

Results
Alternatively, according to the type of component (Input or Output) you want to use, perform one of the following operations:

- Output: Press Ctrl on your keyboard while you are dropping the component onto the design workspace to directly include it in the active Job.
- Input: Press Alt on your keyboard while you drop the component onto the design workspace to directly include it in the active Job.

If you double-click the component, the Component view shows the selected connection details as well as the selected schema information.

Note:
If you select the connection without selecting a schema, then the properties will be filled with the first encountered schema.

Centralizing metadata for Big Data
Managing NoSQL metadata

In the Repository tree view, the NoSQL Connections node in the Metadata folder groups the metadata of the connections to NoSQL databases such as Cassandra, MongoDB, and Neo4j. It allows you to centralize the connection properties you set and then to reuse them in your Job designs that involve NoSQL database components - Cassandra, MongoDB, and Neo4j components.
Click **Metadata** in the **Repository** tree view to expand the relevant folder. Each of the connection nodes will gather the various connections and schemas you have set up. Among these connection nodes is the **NoSQL Connections** node.

The following sections explain in detail how to use the **NoSQL Connections** node to set up:

- a Cassandra connection,
- a MongoDB connection, and
- a Neo4j connection.

Centralizing Cassandra metadata

If you often need to handle data of a Cassandra database, then you may want to centralize the connection to the Cassandra database and the schema details in the **Metadata** folder in the **Repository** tree view.

The Cassandra metadata setup procedure is made of two separate but closely related major tasks:

1. Create a connection to a Cassandra database.
2. Retrieve Cassandra schemas of interest.

Prerequisites:
• All the required external modules that are missing in Talend Studio due to license restrictions have been installed. For more information, see the *Talend Installation and Upgrade Guide*.

Creating a connection to a Cassandra database

Procedure

1. In the Repository tree view, expand the Metadata node, right-click NoSQL Connection, and select Create Connection from the contextual menu. The connection wizard opens up.

2. In the connection wizard, fill in the general properties of the connection you need to create, such as Name, Purpose and Description. The information you fill in the Description field will appear as a tooltip when you move your mouse pointer over the connection.

 ![Connection Wizard](image)

 When done, click Next to proceed to the next step.

3. Select Cassandra from the DB Type list and Cassandra version of the database you are connecting to from the DB Version list, and specify the following details:

 • From the API type list, either select Datastax to use CQL 3 (Cassandra Query Language) with Cassandra, or select Hector to use CQL 2.

 Note that the Hector API is deprecated for the 2.0 or later version of Cassandra, but it is still available for use in the Studio so that you can be flexible about the version of the query language to be used with Cassandra 2.0.0.

 • Enter the host name or IP address of the Cassandra server in the Server field.

 • Enter the port number of the Cassandra server in the Port field.
The wizard can connect to your Cassandra database without you having to specify a port. The port you provide here is only for use in the Cassandra component that you drop onto the design workspace from this centralized connection.

- If you want to restrict your Cassandra connection to a particular keyspace only, enter the keyspace in the **Keyspace** field.

If you leave this field blank, the wizard will list the column families of all the existing keyspaces of the connected database when you retrieve schemas.

- If your Cassandra server requires authentication for database access, select the **Require authentication** check box and provide your username and password in the corresponding fields.

4. Click the **Check** button to make sure that the connection works.

5. Click **Finish** to validate the settings.

The newly created Cassandra database connection appears under the **NoSQL Connection** node in the **Repository** tree view. You can now drop it onto your design workspace as a Cassandra component, but you still need to define the schema information where needed.

Next, you need to retrieve one or more schemas of interest for your connection.
Retrieving schemas

About this task

In this step, we will retrieve the schemas of interest from the connected Cassandra database.

Procedure

1. In the Repository view, right-click the newly created connection and select Retrieve Schema from the contextual menu.

 ![Contextual menu]

 The wizard opens a new view that lists all the available column families of the specified keyspace, or all the available keyspaces if you did not specify one in the previous step.

2. Expand the keyspace, or keyspaces of interest if you did not specify a keyspace in the previous step as in this example, and select the column family or column families of interest.
3. Click **Next** to proceed to the next step of the wizard where you can edit the generated schema or schemas.

By default, each generated schema is named after the column family on which it is based.
Select a schema from the Schema panel to display its details on the right side, and modify the schema if needed. You can rename any schema, and customize the schema structure according to your needs in the Schema area.

The tool bar allows you to add, remove or move columns in your schema, or replace the schema with the schema defined in an XML file.

To base a schema on another column family, select the schema name in the Schema panel, and select a new column family from the Based on Column Family list, and click the Guess Schema button to overwrite the schema with that of the selected column family. You may need to click the refresh button to refresh the list of column families.

To add a new schema, click the Add Schema button in the Schema panel, which creates an empty schema for you to define.

To remove a schema, select the schema name in the Schema panel and click the Remove Schema button.

To overwrite the modifications you made on the selected schema using its default schema, click Guess schema. Note that all your changes to the schema will be lost if you click this button.

4. Click Finish to complete the schema creation. The result schemas appear under your Cassandra connection in the Repository view. You can now drop the connection or any schema node under it onto your design workspace as a Cassandra component, with all the metadata information automatically filled.
If you need to further edit a schema, right-click the schema and select **Edit Schema** from the contextual menu to open this wizard again and make your modifications.

Warning:
If you modify the schemas, ensure that the data type in the **Type** column is correctly defined.

Centralizing MongoDB metadata

If you often need to handle data of a MongoDB database, then you may want to centralize the connection to the database and the schema details in the **Metadata** folder in the **Repository** tree view.

The MongoDB metadata setup procedure is made of two separate but closely related major tasks:

1. Create a connection to a MongoDB database.
2. Retrieve MongoDB schemas of interest.

Prerequisites:
- All the required external modules that are missing in Talend Studio due to license restrictions have been installed. For more information, see the *Talend Installation and Upgrade Guide*.

Creating a connection to a MongoDB database

Procedure

1. In the **Repository** tree view, expand the **Metadata** node, right-click **NoSQL Connection**, and select **Create Connection** from the contextual menu. The connection wizard opens up.
2. In the connection wizard, fill in the general properties of the connection you need to create, such as **Name**, **Purpose** and **Description**.
 - The information you fill in the **Description** field will appear as a tooltip when you move your mouse pointer over the connection.
3. Select MongoDB from the DB Type list and MongoDB version of the database you are connecting to from the DB Version list, and specify the following details:

- Enter the host name or IP address and the port number of the MongoDB server in the corresponding fields.

 If the database you are connecting to is replicated on different hosts of a replica set, select the Use replica set address check box, and specify the host names or IP addresses and the respective ports in the Replica set address table. This can improve data handling reliability and performance.

- If you want to restrict your MongoDB connection to a particular database only, enter the database name in the Database field.

 If you leave this field blank, the wizard will list the collections of all the existing databases on the connected server when you retrieve schemas.

- If your MongoDB server requires authentication for database access, select the Require authentication check box and provide your username and password in the corresponding fields.
4. Click the **Check** button to make sure that the connection works.

5. Click **Finish** to validate the settings.

The newly created MongoDB database connection appears under the **NoSQL Connection** node in the **Repository** tree view. You can now drop it onto your design workspace as a MongoDB component, but you still need to define the schema information where needed.

Next, you need to retrieve one or more schemas of interest for your connection.

Retrieving MongoDB schemas

About this task

In this step, we will retrieve the schemas of interest from the connected MongoDB database.

Procedure

1. In the **Repository** view, right-click the newly created connection and select **Retrieve Schema** from the contextual menu.
The wizard opens a new view that lists all the available collections of the specified databases, or all the available database if you did not specify one in the previous step.

2. Expand the database, or databases of interest if you did not specify a database in the previous step as in this example, and select the collection or collections of interest.

3. Click **Next** to proceed to the next step of the wizard where you can edit the generated schema or schemas.

By default, each generated schema is named after the collection on which it is based.
Select a schema from the Schema panel to display its details on the right side, and modify the schema if needed. You can rename any schema, and customize the schema structure according to your needs in the Schema area.

The toolbar allows you to add, remove or move columns in your schema, or replace the schema with the schema defined in an XML file.

To base a schema on another collection, select the schema name in the Schema panel, and select a new collection from the Based on Collection list, and click the Guess Schema button to overwrite the schema with that of the selected collection. You may need to click the refresh button to refresh the list of collections.

To add a new schema, click the Add Schema button in the Schema panel, which creates an empty schema for you to define.

To remove a schema, select the schema name in the Schema panel and click the Remove Schema button.

To overwrite the modifications you made on the selected schema using its default schema, click Guess schema. Note that all your changes to the schema will be lost if you click this button.

4. Click Finish to complete the schema creation. The result schemas appear under your MongoDB connection in the Repository view. You can now drop the connection or any schema node under it onto your design workspace as a MongoDB component, with all the metadata information automatically filled.
If you need to further edit a schema, right-click the schema and select Edit Schema from the contextual menu to open this wizard again and make your modifications.

Warning:
If you modify the schemas, ensure that the data type in the Type column is correctly defined.

Centralizing Neo4j metadata

If you often need to handle data of a Neo4j database, then you may want to centralize the connection to the Neo4j database and the schema details in the Metadata folder in the Repository tree view.

Only the Neo4j remote server is supported.

When you use V3.2.X, only tNeo4jInput and tNeo4jRow can reuse the connection.

Do not use a 2.X.X version and a 3.X.X version in the same Job. Otherwise, class conflict issues occur.

The Neo4j metadata setup procedure is made of two separate but closely related major tasks:

1. Create a connection to a Neo4j database.
2. Retrieve Neo4j schemas of interest.

Prerequisites:

- All the required external modules that are missing in Talend Studio due to license restrictions have been installed. For more information, see the [Talend Installation and Upgrade Guide](#).
- You are familiar with Cypher queries for reading data in Neo4j.
- The Neo4j server is up and running.

Creating a connection to a Neo4j database

Procedure

1. In the Repository tree view, expand the Metadata node, right-click NoSQL Connection, and select Create Connection from the contextual menu. The connection wizard opens up.

2. In the connection wizard, fill in the general properties of the connection you need to create, such as Name, Purpose and Description.

 The information you fill in the Description field will appear as a tooltip when you move your mouse pointer over the connection.
When done, click **Next** to proceed to the next step.

3. Select **Neo4j** from the **DB Type** list, and specify the connection details:
 - Enter the authentication information to connect to the remote Neo4j server to be used. Since Neo4j 2.2, user credentials are always required.
 - Specify the root URL in the **Server URL** field.
4. Click the **Check** button to make sure that the connection works.

5. Click **Finish** to validate the settings.

The newly created Neo4j database connection appears under the **NoSQL Connection** node in the **Repository** tree view. You can now drop it onto your design workspace as a Neo4j component, but you still need to define the schema information where needed.

Next, you need to retrieve one or more schemas of interest for your connection.

Retrieving a Neo4j schema

About this task

In this step, we will retrieve the schema of interest from the connected Neo4j database.

Procedure

1. In the **Repository** view, right-click the newly created connection and select **Retrieve Schema** from the contextual menu.
The wizard opens a new view for schema generation based on a Cypher query.

2. In the Cypher field, enter your Cypher query to match the nodes and retrieve the properties of interest.

```
MATCH (n:Employees) RETURN n.ID, n.Name, n.HireDate, n.Salary, n.ManagerID;
```

Warning:
If your Cypher query includes strings, enclose your strings between single quotation marks instead of double ones, which will cause errors in Neo4j components dropped from your centralized metadata.

In this example, the following query is used to match nodes labelled Employees and retrieve their properties ID, Name, HireDate, Salary, and ManagerID as schema columns:
If you want to retrieve all the properties of nodes labelled Employees in this example, you can enter a query like this:

```
MATCH (n:Employees) RETURN n;
```

or:

```
MATCH (n:Employees) RETURN *;
```

3. Click Next to proceed to the next step of the wizard where you can edit the generated schema.

Modify the schema if needed. You can rename the schema, and customize the schema structure according to your needs in the Schema area.

The toolbar allows you to add, remove or move columns in your schema, or replace the schema with the schema defined in an XML file.

To add a new schema, click the Add Schema button in the Schema panel, which creates an empty schema for you to define.

To remove a schema, select the schema name in the Schema panel and click the Remove Schema button.

4. Click Finish to complete the schema creation. The result schema appears under your Neo4j connection in the Repository view. You can now drop the connection or any schema node under it onto your design workspace as a Neo4j component, with all the metadata information automatically filled.
If you need to further edit a schema, right-click the schema and select **Edit Schema** from the contextual menu to open this wizard again and make your modifications.

Warning:
If you modify the schemas, ensure that the data type in the **Type** column is correctly defined.

Managing Hadoop metadata

In the **Repository** tree view, the **Hadoop cluster** node in the **Metadata** folder groups under it the metadata of the connections to the Hadoop elements such as HDFS, Hive or HBase. It allows you to centralize the connection properties you set for a given Hadoop distribution and then to reuse those properties to create separate connections to each Hadoop element.

Click **Metadata** in the **Repository** tree view to expand the relevant folder. Each of the connection nodes will gather the various connections and schemas you have set up. Among these connection nodes is the **Hadoop cluster** node.

The following sections explain in detail how to use the **Hadoop cluster** node to set up:

- an HBase connection,
- an HCatalog connection,
Managing metadata in the Studio

- an HDFS file schema,
- a Hive connection, and
- an Oozie connection.

If you need to create a connection to Cloudera’s analytic database, Impala, you need to use the **DB connection** node under the **Metadata** node of the **Repository**. Its configuration is similar to that of a Hive connection but less complicated than the latter.

For further information about this **DB connection** node, see Centralizing database metadata on page 207.

Centralizing a Hadoop connection

About this task

Setting up a connection to a given Hadoop distribution in **Repository** allows you to avoid configuring that connection each time when you need to use the same Hadoop distribution.

You need to define a Hadoop connection before being able to create from the **Hadoop cluster** node the connections to each individual Hadoop element such as HDFS, Hive or Oozie.

Prerequisites:

- Ensure that the client machine on which the Talend Studio is installed can recognize the host names of the nodes of the Hadoop cluster to be used. For this purpose, add the IP address/hostname mapping entries for the services of that Hadoop cluster in the **hosts** file of the client machine.

 For example, if the host name of the Hadoop Namenode server is **talend-cdh550.weave.local** and its IP address is **192.168.x.x**, the mapping entry reads **192.168.x.x talend-cdh550.weave.local**.

- The Hadoop cluster to be used has been properly configured and is running.

- If you need to connect to MapR from the Studio, ensure that you have installed the MapR client in the machine where the Studio is, and added the MapR client library to the **PATH** variable of that machine. According to MapR’s documentation, the library or libraries of a MapR client corresponding to each OS version can be found under **MAPR_INSTALL\hadoop\hadoop-VERSION\lib\native**. For example, the library for Windows is **\lib\native\MapRClient.dll** in the MapR client jar file. For further information, see the following link from **MapR**: http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr.

To create a Hadoop connection in the **Repository**, do the following:

Procedure

1. In the **Repository** tree view of your studio, expand **Metadata** and then right-click **Hadoop cluster**.
2. Select **Create Hadoop cluster** from the contextual menu to open the **Hadoop cluster connection wizard**.
3. Fill in generic information about this connection, such as **Name** and **Description** and click **Next** to open the **Hadoop Configuration Import Wizard** window that allows you to select the manual or the automatic mode to configure the connection.
Configuring the Hadoop connection automatically

About this task

This automatic mode can only be applied to the Hadoop distributions officially supported by the Studio, that is to say, the distributions you can find in this Hadoop Configuration Import Wizard window.

Procedure

1. In the Distribution area, select the Hadoop distribution to be used and its version.
2. Select how you want to set up the configuration from this import wizard.
 - Retrieve configuration from Ambari or Cloudera: if you are using a Hortonworks Data Platform or a Cloudera CDH cluster and your cluster contains its specific management platform: Hortonworks Ambari for Hortonworks Data Platform and Cloudera manager for Cloudera CDH, select this check box to directly import the configuration. For further information, see Retrieving configuration from Ambari or Cloudera on page 381.
 - Import configuration from local files: when you have obtained or you can obtain the configuration files (mainly the *-site.xml files), for example, from the administrator of the Hadoop cluster or downloaded directly from the Web-based cluster management service, use this option to import the properties directly from those files. For further information, see Importing configuration from local files on page 382.
Managing metadata in the Studio

Retrieving configuration from Ambari or Cloudera

About this task

If you are able to access the Web-based management service of your cluster, that is to say, Ambari for Hortonworks or Cloudera Manager for Cloudera, select this Retrieve configuration from Ambari or Cloudera option to import the configuration information directly from that management service.

This image shows an example of this wizard for configuration retrieval.

From this wizard, do the following:

Procedure

1. In the area for the credentials, enter the authentication information to login the Web-based management service of the cluster to be used. In this example, it is the Cloudera manager to connect to.

2. If the certificate system has been set up for the management service you need to connect to, select the Customize SSL truststore check box to activate the related fields and then complete them using your TrustStore file.

 If you do not have this TrustStore file at hand, contact the administrator of the cluster.
Both Hortonworks and Cloudera provide the security-related information around their Web-based management service in their documentation. You can find more details on their websites for documentation:

- Cloudera: http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_sg_config_tls_security.html.
- Hortonworks: http://docs.hortonworks.com/HDPDocuments/Ambari-1.6.1.0/bk_ambari_security/content/ambari-security-overview.html.

3. If your local machine has access permissions to your Ambari or Cloudera manager, click the Connect button to create the connection from the Studio to Ambari or Cloudera manager. The name of the cluster managed by this cluster management service is displayed on the Discovered clusters list.

4. Click the Fetch button to retrieve and list the configuration of the services of this cluster in this wizard.

5. Select the services for which you want to import the configuration information.

6. Click Finish.

 Then the relevant configuration information is automatically filled in the next step of the Hadoop cluster connection wizard.

 For this reason, it is important to select this check box to make your custom configuration override the default one.

7. Click the Check services button to verify that the Studio can connect to the NameNode and the ResourceManager services you have specified in this wizard.

 A dialog box pops up to indicate the checking process and the connection status. If it shows that the connection fails, you need to review and update the connection information you have defined in the connection wizard.

8. Click Finish to validate the changes.

Results

If you need more details about the auto-completed fields in this Hadoop cluster connection wizard, see Configuring the connection manually on page 386

Importing configuration from local files

About this task

Once you have selected Import configuration from local files in the import wizard, the following wizard is opened to help you select the Hadoop configuration files (mainly the *-site.xml files) to be used from the local machine.
From this wizard, proceed as follows:

Procedure

1. Click **Browse...** to access the folder in which the local configuration files to be used are stored and click **OK** to list the configurations in this wizard.

 It is recommended to store these configuration files using a short access path in the local machine.

 The following image shows some files used for the configuration of HDFS, MapReduce and Yarn in Cloudera. These sample files are downloaded and automatically generated by Cloudera manager.
2. From the configuration list, select the configurations to be imported, for example, those for HDFS and MAPREDUCE2, and click Finish. Then the relevant configuration information is automatically filled in the next step of the Hadoop cluster connection wizard.
3. For this reason, it is important to select this check box to make your custom configuration override the default one.

4. Click the Check services button to verify that the Studio can connect to the NameNode and the ResourceManager services you have specified in this wizard.
 A dialog box pops up to indicate the checking process and the connection status. If it shows that the connection fails, you need to review and update the connection information you have defined in the connection wizard.

5. Click Finish to validate the changes.
Results

If you need more details about the auto-completed fields in this Hadoop cluster connection wizard, see Configuring the connection manually on page 386

Configuring the connection manually

About this task

Even though importing a given Hadoop configuration is always an efficient way, you may have to set up the connection manually in some circumstances, for example, you do not have the configurations you can import at hand.

Procedure

1. In this Hadoop Configuration Import Wizard window, select Enter manually Hadoop services and click Finish to go back to the Hadoop Cluster Connection wizard. This mode allows you to connect to a custom Hadoop distribution. For further information, see Connecting to custom Hadoop distribution on page 392.

2. Fill in the fields that become activated depending on the version info you have selected.

 Note that among these fields, the NameNode URI field and the Resource Manager field have been automatically filled with the default syntax and port number corresponding to the selected distribution. You need to update only the part you need to depending on the configuration of the Hadoop cluster to be used. For further information about these different fields to be filled, see the following list.
Those fields may be:

- **Namenode URI**:

 Enter the URI pointing to the machine used as the NameNode of the Hadoop distribution to be used.

 The NameNode is the master node of a Hadoop system. For example, we assume that you have chosen a machine called `machine1` as the NameNode of an Apache Hadoop distribution, then the location to be entered is `hdfs://machine1:portnumber`.

 If you are using a MapR distribution, you can simply leave `maprfs:///` as it is in this field; then the MapR client will take care of the rest on the fly for creating the connection. The MapR client must be properly installed. For further information about how to set up a MapR
client, see the following link in MapR’s documentation: http://doc.mapr.com/display/MapR/Setting+Up+the+Client.

- **Resource Manager:**

 Enter the URI pointing to the machine used as the Resource Manager service of the Hadoop distribution to be used.

 Note that in some older Hadoop distribution versions, you need to set the location of the JobTracker service instead of the Resource Manager service.

 Then you need to set further the addresses of the related services such as the address of the ResourceManager scheduler. When you use this connection in a Big Data relevant component such as thiveConnection, you will be able to allocate memory to the Map and the Reduce computations and the ApplicationMaster of YARN in the Advanced settings view. For further information about the Resource Manager, its scheduler and the ApplicationMaster, see the documentation about YARN for your distribution such as http://hortonworks.com/blog/apache-hadoop-yarn-concepts-and-applications/.

- **Job history:**

 Enter the location of the JobHistory server of the Hadoop cluster to be used. This allows the metrics information of the current Job to be stored in that JobHistory server.

- **Staging directory:**

 Enter this directory defined in your Hadoop cluster for temporary files created by running programs. Typically, this directory can be found under the yarn.app.mapreduce.am.staging-dir property in the configuration files such as yarn-site.xml or mapred-site.xml of your distribution.

- **Use datanode hostname:**

 Select this check box to allow the Job to access datanodes via their hostnames. This actually sets the dfs.client.use.datanode.hostname property to true. If this connection is going to be used by a Job connecting to a S3N filesystem, you must select this check box.

- **Enable Kerberos security:**

 If you are accessing a Hadoop distribution running with Kerberos security, select this check box, then, enter the Kerberos principal names for the NameNode in the field activated.

 These principals can be found in the configuration files of your distribution. For example, in a CDH4 distribution, the Resource manager principal is set in the yarn-site.xml file and the Job history principal in the mapred-site.xml file.

 If you need to use a keytab file to log in, select the Use a keytab to authenticate check box. A keytab file contains pairs of Kerberos principals and encrypted keys. You need to enter the principal to be used in the Principal field and in the Keytab field, browse to the keytab file to be used.

 Note that the user that executes a keytab-enabled Job is not necessarily the one a principal designates but must have the right to read the keytab file being used. For example, the user name you are using to execute a Job is user1 and the principal to be used is guest; in this situation, ensure that user1 has the right to read the keytab file to be used.

- **If you are connecting to a MapR cluster V4.0.1 and onwards and the MapR ticket security system of the cluster has been enabled, you need to select the Force MapR Ticket Authentication check box and define the following parameters:**

 1. In the Password field, specify the password used by the user for authentication.
A MapR security ticket is generated for this user by MapR and stored in the machine where the Job you are configuring is executed.

2. In the **Cluster name** field, enter the name of the MapR cluster you want to use this username to connect to.

 This cluster name can be found in the `mapr-clusters.conf` file located in `/opt/mapr/conf` of the cluster.

3. In the **Ticket duration** field, enter the length of time (in seconds) during which the ticket is valid.

4. Keep the **Launch authentication mechanism when the Job starts** check box selected in order to ensure that the Job using this connection takes into account the current security configuration when it starts to run.

If the default security configuration of your MapR cluster has been changed, you need to configure the connection to take this custom security configuration into account.

MapR specifies its security configuration in the `mapr.login.conf` file located in `/opt/mapr/conf` of the cluster. For further information about this configuration file and the Java service it uses behind, see `mapr.login.conf` and JAAS.

Proceed as follows to do the configuration:

1. Verify what has been changed about this `mapr.login.conf` file.

 You should be able to obtain the related information from the administrator or the developer of your MapR cluster.

2. If the location of the MapR configuration files has been changed to somewhere else in the cluster, that is to say, the MapR Home directory has been changed, select the **Set the MapR Home directory** check box and enter the new Home directory. Otherwise, leave this check box clear and the default Home directory is used.

3. If the login module to be used in the `mapr.login.conf` file has been changed, select the **Specify the Hadoop login configuration** check box and enter the module to be called from the `mapr.login.conf` file. Otherwise, leave this check box clear and the default login module is used.

 For example, enter `kerberos` to call the `hadoop_kerberos` module or `hybrid` to call the `hadoop_hybrid` module.

 - **User name:**

 Enter the user authentication name of the Hadoop distribution to be used.

 If you leave this field empty, the Studio will use your login name of the client machine you are working on to access that Hadoop distribution. For example, if you are using the Studio in a Windows machine and your login name is `Company`, then the authentication name to be used at runtime will be `Company`.

 - **Group:**

 Enter the group name to which the authenticated user belongs.

 Note that this field becomes activated depending on the distribution you are using.

 - **Hadoop properties:**

 If you need to use custom configuration for the Hadoop distribution to be used, click the `[...]` button to open the properties table and add the property or properties to be customized.

 Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.
Note that the properties set in this table are inherited and reused by the child connections you will be able to create based on this current Hadoop connection.

For further information about the properties of Hadoop, see Apache’s Hadoop documentation on http://hadoop.apache.org/docs/current/, or the documentation of the Hadoop distribution you need to use. For example, the following page lists some of the default Hadoop properties: https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml.

For further information about how to leverage this properties table, see Setting reusable Hadoop properties on page 426.

- **Use Spark Properties**: select the Use Spark properties check box to open the properties table and add the property or properties specific to Spark configuration you want to use, for example, from spark-defaults.conf of your cluster.

- When the distribution to be used is Microsoft HD Insight, you need to set the WebHCat configuration for your HD Insight cluster, the HDInsight configuration for the credentials of your HD Insight cluster and the Window Azure Storage configuration instead of the parameters mentioned above.

WebHCat configuration	Enter the address and the authentication information of the Microsoft HD Insight cluster to be used. For example, the address could be your_hdinsight_cluster_name.azurehdinsight.net and the authentication information is your Azure account name: ychen. The Studio uses this service to submit the Job to the HD Insight cluster. In the Job result folder field, enter the location in which you want to store the execution result of a Job in the Azure Storage to be used.
HDInsight configuration	• The Username is the one defined when creating your cluster. You can find it in the SSH + Cluster login blade of your cluster. • The Password is defined when creating your HDInsight cluster for authentication to this cluster.
Windows Azure Storage configuration	Enter the address and the authentication information of the Azure Storage account to be used. In this configuration, you do not define where to read or write your business data but define where to deploy your Job only. Therefore always use the Azure Storage system for this configuration. In the Container field, enter the name of the container to be used. You can find the available containers in the Blob blade of the Azure Storage account to be used. In the Deployment Blob field, enter the location in which you want to store the current Job and its dependent libraries in this Azure Storage account. In the Hostname field, enter the Primary Blob Service Endpoint of your Azure Storage account without the https:// part. You can find this endpoint in the Properties blade of this storage account. In the Username field, enter the name of the Azure Storage account to be used.
In the **Password** field, enter the access key of the Azure Storage account to be used. This key can be found in the **Access keys** blade of this storage account.

- If you are using Cloudera V5.5+, you can select the **Use Cloudera Navigator** check box to enable the Cloudera Navigator of your distribution to trace your Job lineage to the component level, including the schema changes between components.

You need then to click the [...] button to open the **Cloudera Navigator Wizard** window to define the following parameters:

1. **Username** and **Password**: this is the credentials you use to connect to your Cloudera Navigator.
2. **URL**: enter the location of the Cloudera Navigator to be connected to
3. **Metadata URL**: enter the location of the Navigator Metadata.
4. **Client URL**: leave the default value as is.
5. **Autocommit**: select this check box to make Cloudera Navigator generate the lineage of the current Job at the end of the execution of this Job.

 Since this option actually forces Cloudera Navigator to generate lineages of all its available entities such as HDFS files and directories, Hive queries or Pig scripts, it is not recommended for the production environment because it will slow the Job.

6. **Die on error**: select this check box to stop the execution of the Job when the connection to your Cloudera Navigator fails.

 Otherwise, leave it clear to allow your Job to continue to run.

7. **Disable SSL**: select this check box to make your Job to connect to Cloudera Navigator without the SSL validation process.

 This feature is meant to facilitate the test of your Job but is not recommended to be used in a production cluster.

Once the configuration is done, click **Finish** to validate the settings.

3. If you need to use your custom configuration to replace the default one, select the **Use custom Hadoop confs** check box and then click the [...] button to open the import wizard to import the configuration from Ambari or Cloudera manager or some local files.

 Note that this import overwrites only the default Hadoop configuration used by the Studio but does not overwrite the parameters you have defined in this **Hadoop cluster connection** wizard.

 For further information about this import, see Retrieving configuration from Ambari or Cloudera on page 381 and Importing configuration from local files on page 382.

4. Click the **Check services** button to verify that the Studio can connect to the NameNode and the JobTracker or ResourceManager services you have specified in this wizard.

 A dialog box pops up to indicate the checking process and the connection status. If it shows that the connection fails, you need to review and update the connection information you have defined in the connection wizard.

5. Click **Finish** to validate your changes and close the wizard.

 The newly set-up Hadoop connection displays under the **Hadoop cluster** folder in the **Repository** tree view. This connection has no sub-folders until you create connections to any element under that Hadoop distribution.
Connecting to custom Hadoop distribution

When you select the Custom option from the Distribution drop-down list, you are connecting to a Hadoop distribution different from any of the Hadoop distributions provided on that Distribution list in the Studio.

About this task

After selecting this Custom option, click the button to display the Import custom definition dialog box and proceed as follows:

Note that custom versions are not officially supported by Talend. Talend and its community provide you with the opportunity to connect to custom versions from the Studio but cannot guarantee that the configuration of whichever version you choose will be easy, due to the wide range of different Hadoop distributions and versions that are available. As such, you should only attempt to set up such a connection if you have sufficient Hadoop experience to handle any issues on your own.

Procedure

1. Depending on your situation, select Import from existing version or Import from zip to configure the custom Hadoop distribution to be connected to.

 • If you have the configuration zip file of the custom Hadoop distribution you need to connect to, select Import from zip. In Talend Exchange, members of Talend community have shared some ready-for-use configuration zip files which you can download from this Hadoop configuration list and directly use them in your connection accordingly. However, because of the ongoing evolution of the different Hadoop-related projects, you might not be able to find the configuration zip corresponding to your distribution from this list; then it is recommended to use the Import from existing version option to take an existing distribution as base to add the jars required by your distribution.

 Note that the zip files are only configuration files and cannot be installed directly from Talend Exchange. For further information about Talend Exchange, see Exchange preferences (Talend > Exchange) on page 491.
• Otherwise, select **Import from existing version** to import an officially supported Hadoop distribution as base so as to customize it by following the wizard. Adopting this approach requires knowledge about the configuration of the Hadoop distribution to be used.

Note that the check boxes in the wizard allow you to select the Hadoop element(s) you need to import. All the check boxes are not always displayed in your wizard depending on the context in which you are creating the connection. For example, if you are creating this connection for Oozie, then only the **Oozie** check box appears.

2. Whether you have selected **Import from existing version** or **Import from zip**, verify that each check box next to the Hadoop element you need to import has been selected.

3. Click **OK** and then in the pop-up warning, click **Yes** to accept overwriting any custom setup of jar files previously implemented.

Once done, the **Custom Hadoop version definition** dialog box becomes active.
This dialog box lists the Hadoop elements and their jar files you are importing.

4. If you have selected **Import from zip**, click **OK** to validate the imported configuration.
 If you have selected **Import from existing version** as base, you should still need to add more jar files to customize that version. Then from the tab of the Hadoop element you need to customize, for example, the **HDFS/HCatalog/Oozie** tab, click the **[+]** button to open the **Select libraries** dialog box.

5. Select the **External libraries** option to open its view.
6. Browse to and select any jar file you need to import.
7. Click **OK** to validate the changes and to close the **Select libraries** dialog box.
 Once done, the selected jar file appears on the list in the tab of the Hadoop element being configured.

Note that if you need to share the custom Hadoop setup with another Studio, you can export this custom connection from the **Custom Hadoop version definition** window using the **Export** button.
8. In the **Custom Hadoop version definition** dialog box, click **OK** to validate the customized configuration. This brings you back to the configuration view in which you have selected the **Custom** option.

Results

Now that the configuration of the custom Hadoop version has been set up and you are back to the Hadoop connection configuration view, you are able to continue to enter other parameters required by the connection.

If the custom Hadoop version you need to connect to contains YARN and you want to use it, select the **Use YARN** check box next to the **Distribution** list.

A video is available in the following link to demonstrate, by taking HDFS as example, how to set up the connection to a custom Hadoop cluster, also referred to as an unsupported Hadoop distribution: [How to add an unsupported Hadoop distribution to the Studio](#).

Centralizing HBase metadata

If you often need to use a database table from HBase, then you may want to centralize the connection information to the HBase database and the table schema details in the **Metadata** folder in the **Repository** tree view.

Even though you can still do this from the **DB connection** mode, using the **Hadoop cluster** node is the alternative that makes better use of the centralized connection properties for a given Hadoop distribution.

Prerequisites:

- Launch the Hadoop distribution you need to use and ensure that you have the proper access permission to that distribution and its HBase.
- Create the connection to that Hadoop distribution from the Hadoop cluster node. For further information, see [Centralizing a Hadoop connection](#) on page 379.

Creating a connection to HBase

Procedure

1. Expand the **Hadoop cluster** node under the **Metadata** node of the **Repository** tree, right-click the Hadoop connection to be used and select **Create HBase** from the contextual menu.

2. In the connection wizard that opens up, fill in the generic properties of the connection you need create, such as **Name**, **Purpose** and **Description**. The **Status** field is a customized field that you can define in **File > Edit project properties**.
3. Click **Next** to proceed to the next step, which requires you to fill in the HBase connection details. Among them, **DB Type**, **Hadoop cluster**, **Distribution**, **HBase version** and **Server** are automatically pre-filled with the properties inherited from the Hadoop connection you selected in the previous steps.

Note that if you choose **None** from the **Hadoop cluster** list, you are actually switching to a manual mode in which the inherited properties are abandoned and instead you have to configure every property yourself, with the result that the created connection appears under the **Db connection** node only.
4. In the **Port** field, fill in the port number of the HBase database to be connected to.

Note:

In order to make the host name of the Hadoop server recognizable by the client and the host computers, you have to establish an IP address/hostname mapping entry for that host name in the related `hosts` files of the client and the host computers. For example, the host name of the Hadoop server is `talend-all-hdp`, and its IP address is `192.168.x.x`, then the mapping entry reads `192.168.x.x talend-all-hdp`. For the Windows system, you need to add the entry to the file `C:\WINDOWS\system32\drivers\etc\hosts` (assuming Windows is installed on drive C). For the Linux system, you need to add the entry to the file `/etc/hosts`.

5. In the **Column family** field, enter the column family if you want to filter columns, and click **Check** to check your connection.
6. If you are accessing a Hadoop distribution running with Kerberos security, select this check box, then, enter the Kerberos principal name for the NameNode in the field activated. This enables you to use your user name to authenticate against the credentials stored in Kerberos.

If you need to use a keytab file to log in, select the **Use a keytab to authenticate** check box. A keytab file contains pairs of Kerberos principals and encrypted keys. You need to enter the principal to be used in the **Principal** field and in the **Keytab** field, browse to the keytab file to be used.

Note that the user that executes a keytab-enabled Job is not necessarily the one a principal designates but must have the right to read the keytab file being used. For example, the user name you are using to execute a Job is **user1** and the principal to be used is **guest**; in this situation, ensure that **user1** has the right to read the keytab file to be used.

7. If you need to use custom configuration for the Hadoop or HBase distribution to be used, click the [...] button next to **Hadoop properties** to open the properties table and add the property or properties to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.

Note a **Parent Hadoop properties** table is displayed above the current properties table you are editing. This parent table is read-only and lists the Hadoop properties that have been defined in the wizard of the parent Hadoop connection on which the current HBase connection is based.

For further information about the properties of Hadoop, see Apache's Hadoop documentation on http://hadoop.apache.org/docs/current/, or the documentation of the Hadoop distribution you need to use. For example, the following page lists some of the default Hadoop properties: https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml.

For further information about the properties of HBase, see Apache's documentation for HBase. For example, the following page describes some of the HBase configuration properties: http://hbase.apache.org/book.html#_configuration_files.

For further information about how to leverage this properties table, see Setting reusable Hadoop properties on page 426.
8. Click **Finish** to validate the changes.

The newly created HBase connection appears under the Hadoop cluster node of the **Repository** tree. In addition, as an HBase connection is a database connection, this new connection appears under the **Db connections** node, too.
Note:
This Repository view may vary depending on the edition of the Studio you are using.

Results

If you need to use an environmental context to define the parameters of this connection, click the Export as context button to open the corresponding wizard and make the choice from the following options:

- **Create a new repository context**: create this environmental context out of the current Hadoop connection, that is to say, the parameters to be set in the wizard are taken as context variables with the values you have given to these parameters.
- **Reuse an existing repository context**: use the variables of a given environmental context to configure the current connection.

If you need to cancel the implementation of the context, click Revert context. Then the values of the context variables being used are directly put in this wizard.

For a step-by-step example about how to use this Export as context feature, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

Retrieving a table schema

In this step, we will retrieve the table schema of interest from the connected HBase database.

Procedure

1. In the Repository view, right-click the newly created connection and select Retrieve schema from the contextual menu, and click Next on the wizard that opens to view and filter different tables in the HBase database.

You can define the number of columns to be displayed for each column family in the Limit field.

If you want to set this limit for all the HBase/MapR-DB connection metadata to be defined in the Repository, set the limit in the HBase/MapR-DB scan limit field in Preferences > Talend > Performance.
2. Expand the relevant database table and column family nodes and select the columns of interest, and click **Next** to open a new view on the wizard that lists the selected table schema(s). You can select any of them to display its details in the **Schema** area on the right side of the wizard.
3. Modify the selected schema if needed. You can rename the schema, and customize the schema structure according to your needs in the **Schema** area.

 The tool bar allows you to add, remove or move columns in your schema.

 To overwrite the modifications you made on the selected schema using its default schema, click **Retrieve schema**. Note that all your changes to the schema will be lost if you click this button.

4. Click **Finish** to complete the HBase table schema creation. All the retrieved schemas are displayed under the related HBase connection in the **Repository** view.

 If you need to further edit a schema, right-click the schema and select **Edit Schema** from the contextual menu to open this wizard again and make your modifications.
Warning:
If you modify the schemas, ensure that the data type in the Type column is correctly defined.

Results
As explained earlier, apart from using the Hadoop cluster node, you can as well create an HBase connection and retrieve schemas from the Db connection node. In either way, you need always to define the specific HBase connection properties. At that step:

- if you select from the Hadoop cluster list the Repository option to reuse details of an established Hadoop connection, the created HBase connection will eventually be classified under both the Hadoop cluster node and the Db connection node;
- otherwise, if you select from the Hadoop cluster list the None option in order to enter the Hadoop connection properties yourself, the created HBase connection will appear under the Db connection node only.

Centralizing MapR-DB metadata
If you often need to use a database table from MapR-DB, then you may want to centralize the connection information to MapR-DB and the table schema details in the Metadata folder in the Repository tree view.

Even though you can do this from the DB connection node, using the Hadoop cluster node is recommended in order to make better use of the centralized connection properties for a given MapR distribution.

Prerequisites:
- Launch the MapR distribution you need to use and ensure that you have the proper access permission to that distribution and its MapR-DB database.
- Create the connection to that MapR distribution from the Hadoop cluster node. For further information, see Centralizing a Hadoop connection on page 379.

Creating a connection to MapR-DB

Procedure
1. Expand the Hadoop cluster node under the Metadata node of the Repository tree, right-click the MapR connection to be used and select Create MapRDB from the contextual menu.
2. In the connection wizard that opens up, fill in the generic properties of the connection you need create, such as Name, Purpose and Description. The Status field is a customized field that you can define in File > Edit project properties.
3. Click Next to proceed to the next step, which requires you to fill in the MapR-DB connection details. Among them, DB Type, Hadoop cluster, Distribution, MapR-DB version and Server are automatically pre-filled with the properties inherited from the MapR connection you selected in the previous steps.
Note that if you choose None from the Hadoop cluster list, you are actually switching to a manual mode in which the inherited properties are abandoned and instead you have to configure every property yourself, with the result that the created connection appears under the Db connection node only.

4. In the Port field, fill in the port number of the MapR-DB database to be connected to. The default number is 5181, which is actually the port to the nodes running Zookeeper services.

5. In the Column family field, enter the column family if you want to filter columns, and click Check to check your connection.

6. If the database to be used is running with Kerberos security, select the User Kerberos authentication check box, then, enter the principal names in the displayed fields. You should be able to find the information in the hbase-site.xml file of the MapR cluster to be used.

 If you need to use a keytab file to log in, select the Use a keytab to authenticate check box. A keytab file contains pairs of Kerberos principals and encrypted keys. You need to enter the principal to be used in the Principal field and in the Keytab field, browse to the keytab file to be used.

 Note that the user that executes a keytab-enabled Job is not necessarily the one a principal designates but must have the right to read the keytab file being used. For example, the user name you are using to execute a Job is user1 and the principal to be used is guest; in this situation, ensure that user1 has the right to read the keytab file to be used.

7. If the MapR cluster to be used is secured with the MapR ticket authentication mechanism, select Force MapR Ticket authentication, in order to set the related security configuration.

 a) Select the Force MapR ticket authentication check box to display the related parameters to be defined.

 b) In the Username field, enter the username to be authenticated and in the Password field, specify the password used by this user.

 A MapR security ticket is generated for this user by MapR and stored in the machine where the Job you are configuring is executed.

 c) If the Group field is available in this tab, you need to enter the name of the group to which the user to be authenticated belongs.

 d) In the Cluster name field, enter the name of the MapR cluster you want to use this username to connect to.

 This cluster name can be found in the mapr-clusters.conf file located in /opt/mapr/conf of the cluster.

 e) In the Ticket duration field, enter the length of time (in seconds) during which the ticket is valid.

8. If you need to use custom configuration for the MapR-DB distribution to be used, click the [...] button next to Hadoop properties to open the properties table and add the property or properties.
to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.

Note a Parent Hadoop properties table is displayed above the current properties table you are editing. This parent table is read-only and lists the MapR properties that have been defined in the wizard of the parent MapR connection on which the current MapR-DB connection is based.

For further information about the properties of MapR, see MapR documentation or more general documentation from Apache Hadoop.

Because of the close relation between HBase and MapR-DB, for further information about the properties of MapR-DB, see Apache documentation for HBase. For example, the following page describes some of the HBase configuration properties: http://hbase.apache.org/book .html#_configuration_files.

For further information about how to leverage this properties table, see Setting reusable Hadoop properties on page 426.

9. Click Finish to validate the changes.

The newly created MapR connection appears under the Hadoop cluster node of the Repository tree. In addition, as a MapR-DB connection is a database connection, this new connection appears under the Db connections node, too.

Results

If you need to use an environmental context to define the parameters of this connection, click the Export as context button to open the corresponding wizard and make the choice from the following options:

- Create a new repository context: create this environmental context out of the current Hadoop connection, that is to say, the parameters to be set in the wizard are taken as context variables with the values you have given to these parameters.
- Reuse an existing repository context: use the variables of a given environmental context to configure the current connection.

If you need to cancel the implementation of the context, click Revert context. Then the values of the context variables being used are directly put in this wizard.

For a step-by-step example about how to use this Export as context feature, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

Retrieving a table schema

The way to retrieve a MapR-DB table schema is the same as the way to retrieve a HBase table schema. For details about how to retrieve an HBase schema, see Retrieving a table schema on page 400.

Centralizing HCatalog metadata

If you often need to use a table from HCatalog, a table and storage management layer for Hadoop, then you may want to centralize the connection information to a given HCatalog and the table schema details in the Metadata folder in the Repository tree view.

Prerequisites:
• Launch the HortonWorks Hadoop distribution you need to use and ensure that you have the proper access permission to that distribution and its HCatalog.
• Create the connection to that Hadoop distribution from the Hadoop cluster node. For further information, see Centralizing a Hadoop connection on page 379.

Creating a connection to HCatalog

Procedure
1. Expand Hadoop cluster node under Metadata node in the Repository tree view, right-click the Hadoop connection to be used and select Create HCatalog from the contextual menu.
2. In the connection wizard that opens up, fill in the generic properties of the connection you need create, such as Name, Purpose and Description. The Status field is a customized field you can define in File > Edit project properties.

3. Click Next when completed. The second step requires you to fill in the HCatalog connection data. Among the properties, Host name is automatically pre-filled with the value inherited from the Hadoop connection you selected in the previous steps. The Templeton Port and the Database are using the default values.

This database is actually a Hive database and Templeton (WebHcat) is used as a REST-like web API by HCatalog to issue commands. For further information about Templeton (WebHcat), see Apache’s documentation on https://cwiki.apache.org/confluence/display/Hive/WebHCat+UsingWebHCat.
The Principal and the Realm fields are displayed only when the Hadoop connection you are using enables the Kerberos security. They are the properties required by Kerberos to authenticate the HCatalog client and the HCatalog server to each other.

Note:

In order to make the host name of the Hadoop server recognizable by the client and the host computers, you have to establish an IP address.hostname mapping entry for that host name in the related hosts files of the client and the host computers. For example, the host name of the Hadoop server is talend-all-hdp, and its IP address is 192.168.x.x, then the mapping entry reads 192.168.x.x talend-all-hdp. For the Windows system, you need to add the entry to the file C:\WINDOWS\system32\drivers\etc\hosts (assuming Windows is installed on drive C). For the Linux system, you need to add the entry to the file /etc/hosts.

4. If necessary, change these default values to those of the port and the database used by the HCatalog you connect to.

5. If required, enter the Principal and the Realm properties.
6. If you need to use custom configuration for the Hadoop or HCatalog distribution to be used, click the [...] button next to **Hadoop properties** to open the properties table and add the property or properties to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.

Note a **Parent Hadoop properties** table is displayed above the current properties table you are editing. This parent table is read-only and lists the Hadoop properties that have been defined in the wizard of the parent Hadoop connection on which the current HCatalog connection is based.

For further information about the properties of Hadoop, see Apache’s Hadoop documentation on http://hadoop.apache.org/docs/current/, or the documentation of the Hadoop distribution you need to use. For example, the following page lists some of the default Hadoop properties: https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml.

For further information about the properties of HCatalog, see Apache’s documentation for HCatalog. For example, the following page describes some of the HCatalog configuration properties: https://cwiki.apache.org/confluence/display/Hive/HCatalog+Configuration+Properties.

For further information about how to leverage this properties table, see Setting reusable Hadoop properties on page 426.

7. Click **Check** to test the connection you have just defined. A message pops up to indicate whether the connection is successful.

8. Click **Finish** to validate these changes.

The created HCatalog connection is available under the **Hadoop cluster** node in the **Repository** tree view.

Note:

This **Repository** view may vary depending on the edition of the Studio you are using.

If you need to use an environmental context to define the parameters of this connection, click the **Export as context** button to open the corresponding wizard and make the choice from the following options:
• **Create a new repository context**: create this environmental context out of the current Hadoop connection, that is to say, the parameters to be set in the wizard are taken as context variables with the values you have given to these parameters.

• **Reuse an existing repository context**: use the variables of a given environmental context to configure the current connection.

If you need to cancel the implementation of the context, click **Revert context**. Then the values of the context variables being used are directly put in this wizard.

For a step-by-step example about how to use this **Export as context** feature, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

9. Right-click the newly created connection, and select **Retrieve schema** from the drop-down list in order to load the desired table schema from the established connection.

Retrieving a Hcatalog table schema

Procedure

1. When you click **Retrieve Schema**, a new wizard opens up where you can filter and display different tables in the HCatalog.

2. In the **Name filter** field, you can enter the name of the table(s) you are looking for to filter it/them. Otherwise, you can directly find and select the table(s) of which you need to retrieve the schema(s).

Each time when the schema retrieval is done for a table selected, the **Creation status** of this table becomes **Success**.
3. Click **Next** to open a new view on the wizard that lists the selected table schema(s). You can select any of them to display its details in the **Schema** area.

4. Modify the selected schema if needed. You can change the name of the schema and according to your needs, you can also customize the schema structure in the **Schema** area.

 Indeed, the tool bar allows you to add, remove or move columns in your schema.

 To overwrite the modifications you made on this selected schema with its default one, click **Retrieve schema**. Note that this overwriting does not retain any custom edits.

5. Click **Finish** to complete the HCatalog table schema creation. All the retrieved schemas are displayed under the relevant HCatalog connection node in the **Repository** view.

 If then you still need to edit a schema, right click this schema under the related HCatalog connection node in the **Repository** view and from the contextual menu, select **Edit Schema** to open this wizard again and then make the modifications.

 Note:

 If you modify the schemas, ensure that the data type in the **Type** column is correctly defined.

Centralizing HDFS metadata

If you often need to use a file schema from HDFS, the Hadoop Distributed File System, then you may want to centralize the connection information to the HDFS and the schema details in the **Metadata** folder in the **Repository** tree view.

Prerequisites:

- Launch the Hadoop distribution you need to use and ensure that you have the proper access permission to that distribution and its HDFS.
- Create the connection to that Hadoop distribution from the **Hadoop cluster** node. For further information, see Centralizing a Hadoop connection on page 379.

Creating a connection to HDFS

Procedure

1. Expand the **Hadoop cluster** node under **Metadata** in the **Repository** tree view, right-click the Hadoop connection to be used and select **Create HDFS** from the contextual menu.

2. In the connection wizard that opens up, fill in the generic properties of the connection you need create, such as **Name**, **Purpose** and **Description**. The **Status** field is a customized field you can define in **File >Edit project properties**.

3. Click **Next** when completed. The second step requires you to fill in the HDFS connection data. The **User name** property is automatically pre-filled with the value inherited from the Hadoop connection you selected in the previous steps.

 The **Row separator** and the **Field separator** properties are using the default values.
If the Hadoop connection you are using enables the Kerberos security, the User name field is automatically deactivated.

4. If the data to be accessed in HDFS includes a header message that you want to ignore, select the **Header** check box and enter the number of header rows to be skipped.

5. If you need to define column names for the data to be accessed, select the **Set heading row as column names** check box. This allows the Studio to select the last one of the skipped rows to use as the column names of the data.

 For example, select this check box and enter 1 in the **Header** field; then when you retrieve the schema of the data to be used, the first row of the data will be ignored as data body but used as column names of the data.

6. If you need to use custom HDFS configuration for the Hadoop distribution to be used, click the [...] button next to **Hadoop properties** to open the corresponding properties table and add the property or properties to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.

 Note a **Parent Hadoop properties** table is displayed above the current properties table you are editing. This parent table is read-only and lists the Hadoop properties that have been defined in the wizard of the parent Hadoop connection on which the current HDFS connection is based.
For further information about the HDFS-related properties of Hadoop, see Apache’s Hadoop documentation on http://hadoop.apache.org/docs/current/, or the documentation of the Hadoop distribution you need to use. For example, the following page lists some of the default HDFS-related Hadoop properties: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml.

For further information about how to leverage this properties table, see Setting reusable Hadoop properties on page 426.

7. Change the default separators if necessary and click Check to verify your connection.
A message pops up to indicate whether the connection is successful.

8. Click Finish to validate these changes.
The created HDFS connection is now available under the Hadoop cluster node in the Repository tree view.

Note:
This Repository view may vary depending on the edition of the Studio you are using.

If you need to use an environmental context to define the parameters of this connection, click the Export as context button to open the corresponding wizard and make the choice from the following options:

- **Create a new repository context**: create this environmental context out of the current Hadoop connection, that is to say, the parameters to be set in the wizard are taken as context variables with the values you have given to these parameters.
- **Reuse an existing repository context**: use the variables of a given environmental context to configure the current connection.
If you need to cancel the implementation of the context, click **Revert context**. Then the values of the context variables being used are directly put in this wizard.

For a step-by-step example about how to use this **Export as context** feature, see **Exporting metadata as context and reusing context parameters to set up a connection** on page 350.

9. Right-click the created connection, and select **Retrieve schema** from the drop-down list in order to load the desired file schema from the established connection.

Retrieving a file schema

Procedure

1. When you click **Retrieve Schema**, a new wizard opens up where you can filter and display different objects (an Avro file, for example) in the HDFS.

2. In the **Name filter** field, you can enter the name of the file(s) you are looking for to filter it/them. Otherwise, you can expand the folders listed in this wizard by selecting the check box before them. Then, select the file(s) of which you need to retrieve the schema(s)
Managing metadata in the Studio

Each time when the schema retrieval is done for a file selected, the Creation status of this file becomes Success.

3. Click **Next** to open a new view on the wizard that lists the selected file schema(s). You can select any of them to display its details in the **Schema** area.

![Image of schema creation wizard](image)

4. Modify the selected schema if needed. You can change the name of the schema and according to your needs, you can also customize the schema structure in the **Schema** area.

 Indeed, the tool bar allows you to add, remove or move columns in your schema.

 To overwrite the modifications you made on this selected schema with its default one, click **Retrieve schema**. Note that this overwriting does not retain any custom edits.

5. Click **Finish** to complete the HDFS file schema creation. All the retrieved schemas are displayed under the related HDFS connection node in the **Repository** view.

 If then you still need to edit a schema, right click this schema under the relevant HDFS connection node in the **Repository** view and from the contextual menu, select **Edit Schema** to open this wizard again and then make the modifications.

Note:

If you modify the schemas, ensure that the data type in the **Type** column is correctly defined.
Centralizing Hive metadata

If you often need to use a database table from Hive, then you may want to centralize the connection information to the Hive database and the table schema details in the Metadata folder in the Repository tree view.

Even though you can still do this from the DB connection mode, using the Hadoop cluster node is the alternative that makes better use of the centralized connection properties for a given Hadoop distribution.

Prerequisites:
- Launch the Hadoop distribution you need to use and ensure that you have the proper access permission to that distribution and its Hive database.
- Create the connection to that Hadoop distribution from the Hadoop cluster node. For further information, see Centralizing a Hadoop connection on page 379.

Creating a connection to Hive

Procedure

1. Expand the Hadoop cluster node under the Metadata node of the Repository tree, right-click the Hadoop connection to be used and select Create Hive from the contextual menu.

2. In the connection wizard that opens up, fill in the generic properties of the connection you need create, such as Name, Purpose and Description. The Status field is a customized field that you can define in File > Edit project properties.

3. Click Next to proceed to the next step, which requires you to fill in the Hive connection details. Among them, DB Type, Hadoop cluster, Distribution, Version, Server, NameNode URL and JobTracker URL are automatically pre-filled with the properties inherited from the Hadoop connection you selected in the previous steps.

 Note that if you choose None from the Hadoop cluster list, you are actually switching to a manual mode in which the inherited properties are abandoned and instead you have to configure every property yourself, with the result that the created Hive connection appears under the Db connection node only.
The properties to be set vary depending on the Hadoop distribution you connect to.

4. In the **Version info** area, select the model of the Hive database you want to connect to.
5. Fill in the fields that appear depending on the Hive model you have selected.

When you leave the **Database** field empty, selecting the **Standalone** model enables the connection to the default Hive database only.
6. If you are accessing a Hadoop distribution running with Kerberos security, select the **Use Kerberos authentication** check box. Then enter the Kerberos principal name in the **Hive principal** field activated.

 If you need to use a keytab file to log in, select the **Use a keytab to authenticate** check box, enter the principal to be used in the **Principal** field and in the **Keytab** field, browse to the keytab file to be used.

 A keytab file contains pairs of Kerberos principals and encrypted keys. Note that the user that executes a keytab-enabled Job is not necessarily the one a principal designates but must have the right to read the keytab file being used. For example, the user name you are using to execute a Job is `user1` and the principal to be used is `guest`; in this situation, ensure that `user1` has the right to read the keytab file to be used.

 ![Example](image)

7. In the **Hive metastore port** field, enter listening port number of the metastore of the Hive system to be used.

 If HA metastore has been defined for this Hive system, select the **Enable high availability** check box and in the field that is displayed, enter the URIs of the multiple remote metastore services, each being separated with a comma(,).

8. If you are a custom distribution supporting Tez but not officially supported by Talend, you can select **Tez** as the framework of your Jobs from the **Execution engine** list.

 Then when you reuse this connection in a Hive component, you need to configure the access to the Tez libraries via that component **Advanced settings** view.

9. If you need to use custom configuration for the Hadoop or Hive distribution to be used, click the [...] button next to **Hadoop properties** or **Hive Properties** accordingly to open the corresponding properties table and add the property or properties to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.

 For further information about the properties of Hadoop, see Apache Hadoop documentation on http://hadoop.apache.org/docs/current/, or the documentation of the Hadoop distribution you need to use. For example, the following page lists some of the default Hadoop properties: https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml.

 For further information about the properties of Hive, see Apache documentation for Hive. For example, the following page describe some of the Hive configuration properties: https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties.

 For further information about how to leverage these properties tables, see Setting reusable [Hadoop properties](#) on page 426.
10. Click the **Check** button to verify if your connection is successful.

11. If needed, define the properties of the database in the corresponding fields in the **Database Properties** area.

12. Click **Finish** to validate your changes and close the wizard.

The created connection to the specified Hive database displays under the **DB Connections** folder in the **Repository** tree view. This connection has four sub-folders among which **Table schema** can group all schemas relative to this connection.
If you need to use an environmental context to define the parameters of this connection, click the **Export as context** button to open the corresponding wizard and make the choice from the following options:

- **Create a new repository context**: create this environmental context out of the current Hadoop connection, that is to say, the parameters to be set in the wizard are taken as context variables with the values you have given to these parameters.

- **Reuse an existing repository context**: use the variables of a given environmental context to configure the current connection.

If you need to cancel the implementation of the context, click **Revert context**. Then the values of the context variables being used are directly put in this wizard.

For a step-by-step example about how to use this **Export as context** feature, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

13. Right-click the Hive connection you created and then select **Retrieve Schema** to extract all schemas in the defined Hive database.

Retrieving a Hive table schema

In this step, you will retrieve the table schema of interest from the connected Hive database.

Procedure

1. In the **Repository** view, right-click the Hive connection of interest and select **Retrieve schema** from the contextual menu, and click **Next** on the wizard that opens to view and filter different tables in that Hive database.
2. Expand the nodes of the database tables you need to use and select the columns to be retrieved, and click **Next** to open a new view on the wizard that lists the selected table schema(s). You can select any of them to display its details in the **Schema** area on the right side of the wizard.
Warning: If your source database table contains any default value that is a function or an expression rather than a string, be sure to remove the single quotation marks, if any, enclosing the default value in the end schema to avoid unexpected results when creating database tables using this schema. For more information, see Talend Help Center (https://help.talend.com).

3. Modify the selected schema if needed. You can rename the schema, and customize the schema structure according to your needs in the Schema area.
 The tool bar allows you to add, remove or move columns in your schema.
 To overwrite the modifications you made on the selected schema using its default schema, click Retrieve schema. Note that all your changes to the schema will be lost if you click this button.

4. Click Finish to complete the Hive table schema retrieval. All the retrieved schemas are displayed under the related Hive connection in the Repository view.
 If you need to further edit a schema, right-click the schema and select Edit Schema from the contextual menu to open this wizard again and make your modifications.

Warning:
If you modify the schemas, ensure that the data type in the Type column is correctly defined.
Results
As explained earlier, in addition to using the Hadoop cluster node, you can as well start from the Db connection node to create an Hive connection and retrieve schemas. In either way, you need always to define the specific Hive connection properties. At that step:

- if you select from the Hadoop cluster list the Repository option to reuse details of an established Hadoop connection, the created Hive connection will eventually be classified under both the Hadoop cluster node and the Db connection node;
- otherwise, if you select from the Hadoop cluster list the None option in order to enter the Hadoop connection properties yourself, the created Hive connection will appear under the Db connection node only.

Centralizing an Oozie connection

About this task
If you often need to use Oozie scheduler to run and monitor Jobs on top of Hadoop, then you may want to centralize the Oozie settings in the Metadata folder in the Repository tree view.

Prerequisites:
- Launch the Hadoop distribution you need to use and ensure that you have the proper access permission to that distribution and its Oozie.
- Create the connection to that Hadoop distribution from the Hadoop cluster node. For further information, see Centralizing a Hadoop connection on page 379.

The Oozie scheduler is used to schedule executions of a Job, deploy and run Jobs in HDFS and monitor the executions. To create an Oozie connection, proceed as follows:

Procedure
1. Expand the Hadoop cluster node under Metadata in the Repository tree view, right-click the Hadoop connection to be used and select Create Oozie from the contextual menu.
2. In the connection wizard that opens up, fill in the generic properties of the connection you need create, such as Name, Purpose and Description. The Status field is a customized field you can define in File >Edit project properties.
3. Click **Next** when completed. The second step requires you to fill in the Oozie connection data. In the **End Point** field, the URL of the Oozie web application is automatically constructed with the host name of the NameNode of the Hadoop connection you are using and a default Oozie port number. This web application also allows you to consult the status of the scheduled Job executions in the **Oozie Web Console** in your web browser.

If the Hadoop distribution you select enables the Kerberos security, the **User name** field becomes deactivated.

You can still modify this Oozie URL if necessary.
4. If you need to use custom configuration for the Hadoop distribution to be used, click the [...] button next to **Hadoop properties** to open the corresponding properties table and add the property or properties to be customized. Then at runtime, these changes will override the corresponding default properties used by the Studio for its Hadoop engine.

 Note a **Parent Hadoop properties** table is displayed above the current properties table you are editing. This parent table is read-only and lists the Hadoop properties that have been defined in the wizard of the parent Hadoop connection on which the current Oozie connection is based.

 For further information about the Oozie-related properties of Hadoop, see Apache's Hadoop documentation about Oozie on https://oozie.apache.org/docs, or the documentation of the Hadoop distribution you need to use. For example, the following page lists some of the Oozie-related Hadoop properties: https://oozie.apache.org/docs/4.1.0/AG_HadoopConfiguration.html.

 For further information about how to leverage this properties table, see Setting reusable Hadoop properties on page 426.

5. In the **User name** field, enter the login user name for Oozie, or leave this field empty to use the anonymous access in which the user name of the client machine is used.

6. Click **Check** to verify the connection.

 A message pops up to indicate whether the connection is successful.

7. Click **Finish** to validate these changes.

 The created Oozie connection is now available under the **Hadoop cluster** node in the **Repository** tree view.
Note:
This Repository view may vary depending the edition of the Studio you are using.

Results
Then when you configure the Oozie scheduler for a Job in the Oozie scheduler view, you can reuse the centralized Oozie settings.

For further information about how to use Oozie scheduler for a Job, see Running a Job via Oozie on page 190.

If you need to use an environmental context to define the parameters of this connection, click the Export as context button to open the corresponding wizard and make the choice from the following options:

- **Create a new repository context**: create this environmental context out of the current Hadoop connection, that is to say, the parameters to be set in the wizard are taken as context variables with the values you have given to these parameters.
- **Reuse an existing repository context**: use the variables of a given environmental context to configure the current connection.

If you need to cancel the implementation of the context, click Revert context. Then the values of the context variables being used are directly put in this wizard.

For a step-by-step example about how to use this Export as context feature, see Exporting metadata as context and reusing context parameters to set up a connection on page 350.

Setting reusable Hadoop properties

About this task
When setting up a Hadoop connection, you can define a set of common Hadoop properties that will be reused by its child connections to each individual Hadoop element such as Hive, HDFS or HBase.
For example, in the Hadoop cluster you need to use, you have defined the HDFS High Availability (HA) feature in the `hdfs-site.xml` file of the cluster itself; then you need to set the corresponding properties in the connection wizard in order to enable this High Availability feature in the Studio. Note that these properties can also be set in a specific Hadoop related component and the process of doing this is explained in the article about enabling HDFS High Availability on Talend Help Center (https://help.talend.com). In this section, only the connection wizard approach is presented.

Prerequisites:

- Launch the Hadoop distribution you need to use and ensure that you have the proper access permission to that distribution and its Oozie.
- The High Availability properties to be set in the Studio have been defined in the `hdfs-site.xml` file of the cluster to be used.

In this example, the High Availability properties are:

```xml
<property>
  <name>dfs.nameservices</name>
  <value>nameservice1</value>
</property>
<property>
  <name>dfs.client.failover.proxy.provider.nameservice1</name>
  <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
  <name>dfs.ha.namenodes.nameservice1</name>
  <value>namenode90,namenode96</value>
</property>
<property>
  <name>dfs.namenode.rpc-address.nameservice1.namenode90</name>
  <value>hdp-ha:8020</value>
</property>
<property>
  <name>dfs.namenode.rpc-address.nameservice1.namenode96</name>
  <value>hdp-ha2:8020</value>
</property>
```

The values of these properties are for demonstration purposes only.

To set these properties in the Hadoop connection, open the Hadoop Cluster Connection wizard from the Hadoop cluster node of the Repository. For further information about how to access this wizard, see Centralizing a Hadoop connection on page 379.

Procedure

1. Properly configure the connection to the Hadoop cluster to be used as explained in the previous sections, if you have not done so.
2. Click the [...] button next to Hadoop properties to open the Hadoop properties table.
3. Add the above-listed High Available properties to this table.
4. Click **OK** to validate the changes. These properties are then listed next to the [...] button.

5. Click the **Check services** button to verify the connection.

A dialog box pops up to indicate the checking process and the connection status. If it shows that the connection fails, you need to review and update the connection information you have defined in the connection wizard.
6. Click **Finish** to validate the connection.

Then when you create a child connection, for example to Hive, from this Hadoop connection, these High Availability properties will be inherited there as read-only parent properties.

Results

This way, these properties can be automatically reused by any of its child Hadoop connection.

The image above shows these properties inherited in the Hive connection wizard. For further information about how to access the Hive connection wizard as presented in this section, see [Centralizing Hive metadata](#) on page 416.
Using routines

Managing routines

What are routines

Routines are fairly complex Java functions, generally used to factorize code. They therefore optimize data processing and improve Job capacities.

You can also use the Repository tree view to store frequently used parts of code or extract parts of existing company functions, by calling them via the routines. This factorization makes it easier to resolve any problems which may arise and allows you to update the code used in multiple Jobs quickly and easily.

On top of this, certain system routines adopt the most common Java methods, using the Talend syntax. This allows you to escalate Java errors in the studio directly, thereby facilitating the identification and resolution of problems which may arise as your integration processes evolve with Talend.

There are two types of routines:

- System routines: a number of system routines are provided. They are classed according to the type of data which they process: numerical, string, date...
- User routines: these are routines which you have created or adapted from existing routines.

Note: You do not need any knowledge of the Java language to create and use Talend routines.

All of the routines are stored under Code > Routines in the Repository tree view.

For further information concerning the system routines, see Accessing the System Routines on page 430.

For further information about how to create user routines, see Creating user routines on page 432.

Note: You can also set up routine dependencies on Jobs. To do so, simply right click a Job on the Repository tree view and select Set up routine dependencies. In the dialog box which opens, all routines are set by default. You can use the tool bar to remove routines if required.

Accessing the System Routines

About this task

To access the system routines, click Code > Routines > system. The routines or functions are classed according to their usage.

Note: The system folder and its content are read only.
Each class or category in the system folder contains several routines or functions. Double-click the class that you want to open.

All of the routines or functions within a class are composed of some descriptive text, followed by the corresponding Java code. In the Routines view, you can use the scrollbar to browse the different routines. Or alternatively:

Procedure

1. Press **Ctrl+O** in the routines view.
 A dialog box displays a list of the different routines in the category.

2. Click the routine of interest.
 The view jumps to the section comprising the routine's descriptive text and corresponding code.

Note: The syntax of routine call statements is case sensitive.

Customizing the system routines

About this task

If the system routines are not adapted to your specific needs, you can customize them by copying and pasting the content in a user routine, then modify the content accordingly.

To customize a system routine:

Procedure

1. First of all, create a user routine by following the steps outlined in [Creating user routines](#) on page 432. The routine opens in the workspace, where you shall find a basic example of a routine.
2. Then, under **Code > Routines > system**, select the class of routines which contains the routine(s) you want to customize.

3. Double-click the class which contains the relevant routine to open it in the workspace.

4. Use the **Outline** panel on the bottom left of the studio to locate the routine from which you want to copy all or part of the content.

5. In the workspace, select all or part of the code and copy it using **Ctrl+C**.

6. Click the tab to access your user routine and paste the code by pressing **Ctrl+V**.

7. Modify the code as required and press **Ctrl+S** to save it.

Results

We advise you to use the descriptive text (in blue) to detail the input and output parameters. This will make your routines easier to maintain and reuse.

Managing user routines

Talend Studio allows you to create user routines, to modify them or to modify system routines, in order to fill your specific needs.

Creating user routines

About this task

You can create your own routines according to your particular factorization needs. Like the system routines, the user routines are stored in the **Repository** tree view under **Code > Routines**. You can add folders to help organize your routines and call them easily in any of your Jobs.
To create a new user routine, complete the following:

Procedure

1. In the **Repository** tree view, expand **Code** to display the **Routines** folder.

 ![Repository tree view](image)

2. Right-click **Routines** and select **Create routine**.

3. The **New routine** dialog box opens. Enter the information required to create the routine, i.e., its name, description...

4. Click **Finish** to proceed to the next step.

 ![New routine dialog box](image)

The newly created routine appears in the **Repository** tree view, directly below the **Routines** node. The routine editor opens to reveal a model routine which contains a simple example, by default, comprising descriptive text in blue, followed by the corresponding code.
Note: We advise you to add a very detailed description of the routine. The description should generally include the input and output parameters you would expect to use in the routine, as well as the results returned along with an example. This information tends to be useful for collaborative work and the maintenance of the routines.

The following example of code is provided by default:

```java
public static void helloExample(String message) {
    if (message == null) {
        message = "World"; //NON-NLS-1$
    }
    System.out.println("Hello " + message + "!");
}
```

5. Modify or replace the model with your own code and press Ctrl+S to save the routine. Otherwise, the routine is saved automatically when you close it.

Results

Note: You can copy all or part of a system routine or class and use it in a user routine by using the Ctrl+C and Ctrl+V commands, then adapt the code according to your needs. For further information about how to customize routines, see Customizing the system routines on page 431.

Editing user routines

About this task

You can modify the user routines whenever you like.

Note: The system folder and all of the routines held within are read only.

To edit your user routines:

Procedure

1. Right click the routine you want to edit and select Edit Routine.
2. The routine opens in the workspace, where you can modify it.
3. Once you have adapted the routine to suit your needs, press Ctrl+S to save it.

Results

If you want to reuse a system routine for your own specific needs, see Customizing the system routines on page 431.

Editing user routine libraries

About this task

You can edit the library of any of the user routines by importing external .jar files for the selected routine. These external library files will be listed, like modules, in the Modules view in your current Studio. For more information on the Modules view, see the Talend Installation and Migration Guide.

The .jar file of the imported library will be also listed in the library file of your current Studio.

To edit a user routine library, complete the following:
Using routines

Procedure

1. If the library to be imported isn’t available on your machine, either download and install it using the **Modules** view or download and store it in a local directory.
2. In the **Repository** tree view, expand **Code > Routines**.
3. Right-click the user routine you want to edit its library and then select **Edit Routine Library**. The **Import External Library** dialog box displays.

![Import External Library dialog box](image)

4. Click **New** to open the **New Module** dialog box where you can import the external library.

 Note: You can delete any of the already imported routine files if you select the file in the **Library File** list and click the **Remove** button.

![New Module dialog box](image)

5. Specify the library file to be imported:
• If you have installed the library using the **Modules** view, enter the full name of the library file in the **Input a library’s name** field.
• If you have stored the library file in a local directory, select the **Browse a library file** option and click browse to set the file path in the corresponding field.

6. If required, enter a description in the **Description** field.
7. Click **OK** to confirm your changes.

 The imported library file is listed in the **Library File** list in the **Import External Library** dialog box.

8. Click **Finish** to close the dialog box.

 The library file is imported into the library folder of your current Studio and also listed in the **Module** view of the same Studio. You may need to restart your Studio to bring the external library into effect.

 For more information about the **Modules** view, see the [Talend Installation and Migration Guide](#).

Calling a routine from a Job

Pre-requisite: You must have at least one Job created, in order to run a routine. For further information regarding how to create a Job, see [Creating a Job](#) on page 25.

You can call any of your user and system routines from your Job components in order to run them at the same time as your Job.

To access all the routines saved in the **Routines** folder in the **Repository** tree view, press **Ctrl+Space** in any of the fields in the **Basic settings** view of any of the **Talend** components used in your Job and select the one you want to run.

Alternatively, you can call any of these routines by indicating the relevant class name and the name of the routine, followed by the expected settings, in any of the **Basic settings** fields in the following way:

```
<ClassName>.<RoutineName>
```
Use case: Creating a file for the current date

About this task

This scenario describes how to use a routine. The Job uses just one component, which calls a system routine.

Procedure

1. In the Palette, click File > Management, then drop a tFileTouch component onto the workspace. This component allows you to create an empty file.
2. Double-click the component to open its Basic settings view in the Component tab.
3. In the FileName field, enter the path to access your file, or click [...] and browse the directory to locate the file.

4. Close the double inverted commas around your file extension as follows: "D:/Input/customer.txt".
5. Add the plus symbol (+) between the closing inverted commas and the file extension.
6. Press Ctrl+Space to open a list of all of the routines, and in the auto-completion list which appears, select Talend Date.getDate to use the Talend routine which allows you to obtain the current date.
7. Modify the format of the date provided by default, if required.
8. Enter the plus symbol (+) next to the getDate variable to complete the routine call, and place double inverted commas around the file extension.
Warning: If you are working on windows, the "," between the hours and minutes and between the minutes and seconds must be removed.

9. Press F6 to run the Job.

The tFileTouch component creates an empty file with the days date, retrieved upon execution of the GetDate routine called.

System routines

Numeric Routines

Numeric routines allow you to return whole or decimal numbers in order to use them as settings in one or more Job components. To add numeric IDs, for instance.

To access the routines, double-click the Numeric category, in the System folder. The Numeric category contains several routines, notably sequence, random and convertImpliedDecimalFormat (decimal):

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>Returns an incremental numeric ID.</td>
<td>Numeric.sequence("Parameter name", start value, increment value)</td>
</tr>
<tr>
<td>resetSequence</td>
<td>Creates a sequence if it doesn’t exist and attributes a new start value.</td>
<td>Numeric.resetSequence (Sequence Identifier, start value)</td>
</tr>
<tr>
<td>removeSequence</td>
<td>Removes a sequence.</td>
<td>Numeric.RemoveSequence (Sequence Identifier)</td>
</tr>
<tr>
<td>random</td>
<td>Returns a random whole number between the maximum and minimum values.</td>
<td>Numeric.random(minimum start value, maximum end value)</td>
</tr>
<tr>
<td>convertImpliedDecimalFormat</td>
<td>Returns a decimal with the help of an implicit decimal model.</td>
<td>Numeric.convertImpliedDecimalFormat ("Target Format", value to be converted)</td>
</tr>
</tbody>
</table>

The three routines sequence, resetSequence, and removeSequence are closely related.

- The sequence routine is used to create a sequence identifier, named s1 by default, in the Job. This sequence identifier is global in the Job.
- The resetSequence routine can be used to initialize the value of the sequence identifier created by sequence routine.
- The removeSequence routine is used to remove the sequence identifier from the global variable list in the Job.
Creating a Sequence

The `sequence` routine allows you to create automatically incremented IDs, using a `Java` component:

```java
System.out.println(Numeric.sequence("s1",1,1));
System.out.println(Numeric.sequence("s1",1,1));
```

The routine generates and increments the ID automatically:

```
[statistics] connecting to socket on port 3360
[statistics] connected
1
2
```

Converting an Implied Decimal

It is easy to use the `convertImpliedDecimalFormat` routine, along with a `Java` component, for example:

```java
System.out.println(Numeric.convertImpliedDecimalFormat("9V99","123");
```

The routine automatically converts the value entered as a parameter according to the format of the implied decimal provided:

```
1.23
[statistics] disconnected
Job test_routine ended at 14:12 04/02/2010. (exit code=0)
```

Relational Routines

Relational routines allow you to check affirmations based on booleans.

To access these routines, double-click `Relational` under the `system` folder. The `Relational` class contains several routines, notably:

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISNULL</td>
<td>Checks if the variable provided is a null value.</td>
<td>Relational.ISNULL(variable)</td>
</tr>
<tr>
<td></td>
<td>It returns <code>true</code> if the value is NULL and <code>false</code> if the value is not NULL.</td>
<td></td>
</tr>
<tr>
<td>NOT</td>
<td>Returns the complement of the logical value of an expression.</td>
<td>Relational.NOT(expression)</td>
</tr>
<tr>
<td>IsNull</td>
<td>Checks if the variable provided is a null value.</td>
<td>Relational.isNull(variable)</td>
</tr>
<tr>
<td></td>
<td>It returns <code>1</code> if the value is NULL and <code>0</code> if the value is not NULL.</td>
<td></td>
</tr>
</tbody>
</table>

To check a Relational Routine, you can use the `ISNULL` routine, along with a `Java` component, for example:

```java
String str = null;
System.out.println(Relational.ISNULL(str));
```

In this example, the test result is displayed in the `Run` view:
StringHandling Routines

The StringHandling routines allow you to carry out various kinds of operations and tests on alphanumeric expressions, based on Java methods.

To access these routines, double-click StringHandling under the system folder. The StringHandling class includes the following routines:

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>Checks whether the expression is arranged in alphabetical order. Returns the true or false boolean accordingly.</td>
<td>StringHandling.ALPHA("string to be checked")</td>
</tr>
<tr>
<td>IS_ALPHA</td>
<td>Checks whether the expression contains alphabetical characters only, or otherwise. Returns the true or false boolean accordingly.</td>
<td>StringHandling.IS_ALPHA("string to be checked")</td>
</tr>
<tr>
<td>CHANGE</td>
<td>Replaces an element of a string with a defined replacement element and returns the new string.</td>
<td>StringHandling.CHANGE("string to be checked", "string to be replaced", "replacement string")</td>
</tr>
<tr>
<td>COUNT</td>
<td>Returns the number of times a substring occurs within a string.</td>
<td>StringHandling.COUNT("string to be checked", "substring to be counted")</td>
</tr>
<tr>
<td>DOWNCASE</td>
<td>Converts all uppercase letters in an expression into lowercase and returns the new string.</td>
<td>StringHandling.DOWNCASE("string to be converted")</td>
</tr>
<tr>
<td>UPCASE</td>
<td>Converts all lowercase letters in an expression into uppercase and returns the new string.</td>
<td>StringHandling.UPCASE("string to be converted")</td>
</tr>
<tr>
<td>DQUOTE</td>
<td>Encloses an expression in double quotation marks.</td>
<td>StringHandling.DQUOTE("string to be enclosed in double quotation marks")</td>
</tr>
<tr>
<td>Routine</td>
<td>Description</td>
<td>Syntax</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>EREPLACE</td>
<td>Substitutes all substrings that match the given regular expression in the given old string with the given replacement and returns a new string.</td>
<td>StringHandling.EREPLACE(oldStr, regex, replacement)</td>
</tr>
<tr>
<td>INDEX</td>
<td>Returns the position of the first character in a specified substring, within a whole string. If the substring specified does not exist in the whole string, the value -1 is returned.</td>
<td>StringHandling.INDEX("string to be checked", "substring specified")</td>
</tr>
<tr>
<td>LEFT</td>
<td>Specifies a substring which corresponds to the first n characters in a string.</td>
<td>StringHandling.LEFT("string to be checked", number of characters)</td>
</tr>
<tr>
<td>RIGHT</td>
<td>Specifies a substring which corresponds to the last n characters in a string.</td>
<td>StringHandling.RIGHT("string to be checked", number of characters)</td>
</tr>
<tr>
<td>LEN</td>
<td>Calculates the length of a string.</td>
<td>StringHandling.LEN("string to check")</td>
</tr>
<tr>
<td>SPACE</td>
<td>Generates a string consisting of a specified number of blank spaces.</td>
<td>StringHandling.SPACE(number of blank spaces to be generated)</td>
</tr>
<tr>
<td>SQUOTE</td>
<td>Encloses an expression in single quotation marks.</td>
<td>StringHandling.SQUOTE("string to be enclosed in single quotation marks")</td>
</tr>
<tr>
<td>STR</td>
<td>Generates a particular character a the number of times specified.</td>
<td>StringHandling.STR('character to be generated', number of times)</td>
</tr>
<tr>
<td>TRIM</td>
<td>Deletes the spaces and tabs before the first non-blank character in a string and after the last non-blank character, then returns the new string.</td>
<td>StringHandling.TRIM("string to be checked")</td>
</tr>
<tr>
<td>BTRIM</td>
<td>Deletes all the spaces and tabs after the last non-blank character in a string and returns the new string.</td>
<td>StringHandling.BTRIM("string to be checked")</td>
</tr>
<tr>
<td>FTRIM</td>
<td>Deletes all the spaces and tabs preceding the first non-blank character in a string.</td>
<td>StringHandling.FTRIM("string to be checked")</td>
</tr>
<tr>
<td>SUBSTR</td>
<td>Returns a portion of a string. It counts all characters, including blanks, starting at the beginning of the string.</td>
<td>StringHandling.SUBSTR(string, start, length)</td>
</tr>
<tr>
<td></td>
<td>• string: the character string you want to search.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• start: the position in the string where you want to start counting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• length: the number of characters you want to return.</td>
<td></td>
</tr>
<tr>
<td>Routine</td>
<td>Description</td>
<td>Syntax</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>LTRIM</td>
<td>Removes blanks or characters from the beginning of a string.</td>
<td>StringHandling.LTRIM(string[, trim_set])
• string: the string you want to change.
• trim_set: the characters you want to remove from the beginning of the string. LTRIM will compare the trim_set to the string character-by-character, starting with the left side of the string, and remove characters until it fails to find a matching character in the trim_set. If this parameter is not specified, LTRIM will remove any blanks from the beginning of the string.</td>
</tr>
<tr>
<td>RTRIM</td>
<td>Removes blanks or characters from the end of a string.</td>
<td>StringHandling.RTRIM(string[, trim_set])
• string: the string you want to change.
• trim_set: the characters you want to remove from the end of the string. RTRIM will compare the trim_set to the string character-by-character, starting with the right side of the string, and remove characters until it fails to find a matching character in the trim_set. If this parameter is not specified, RTRIM will remove any blanks from the end of the string.</td>
</tr>
<tr>
<td>LPAD</td>
<td>Converts a string to a specified length by adding blanks or characters to the beginning of the string.</td>
<td>StringHandling.LPAD(first_string, length[, second_string])
• first_string: the string you want to change.
• length: the length you want the string to be after being padded.
• second_string: the characters you want to append to the left side of the first_string.</td>
</tr>
<tr>
<td>RPAD</td>
<td>Converts a string to a specified length by adding blanks or characters to the end of the string.</td>
<td>StringHandling.RPAD(first_string, length[, second_string])
• first_string: the string you want to change.
• length: the length you want the string to be after being padded.
• second_string: the characters you want to append to the right side of the first_string.</td>
</tr>
<tr>
<td>INSTR</td>
<td>Returns the position of a character set in a string, counting from left to right and starting from 1. Note that it returns 0 if the search is unsuccessful and NULL if the search value is NULL.</td>
<td>StringHandling.INSTR(string, search_value, start, occurrence)
• string: the string you want to search.
• search_value: the set of characters you want to search for.
• start: the position in the string where you want to start the search. The default is 1, meaning it starts the search from the first character in the string.
• occurrence: the occurrence you want to search for. For example, StringHandling.INSTR("Talend Technology", "e", 3, 2), it will start the search from the third character l and return 7, the position of the second character e.</td>
</tr>
<tr>
<td>TO_CHAR</td>
<td>Converts numeric values to text strings.</td>
<td>StringHandling.TO_CHAR(numeric_value)</td>
</tr>
</tbody>
</table>
Storing a string in alphabetical order

It is easy to use the \texttt{ALPHA} routine along with a \texttt{Java} component, to check whether a string is in alphabetical order:

\begin{verbatim}
System.out.println(StringHandling.ALPHA("abcdefg"));
\end{verbatim}

The check returns a boolean value.

Checking whether a string is alphabetical

It is easy to use the \texttt{IS_ALPHA} routine along with a \texttt{Java} component, to check whether the string is alphabetical:

\begin{verbatim}
System.out.println(StringHandling.IS_ALPHA("ab33cd"));
\end{verbatim}

The check returns a boolean value.

Replacing an element in a string

It is easy to use the \texttt{CHANGE} routine along with a \texttt{Java} component, to replace one element in a string with another:

\begin{verbatim}
System.out.println(StringHandling.CHANGE("hello world!", "world", "guy"));
\end{verbatim}

The routine replaces the old element with the new element specified.

```
hello guy!
```

Checking the position of a specific character or substring, within a string

The \texttt{INDEX} routine is easy to use along with a \texttt{Java} component, to check whether a string contains a specified character or substring:

\begin{verbatim}
System.out.println(StringHandling.INDEX("hello world!", "hello"));
System.out.println(StringHandling.INDEX("hello world!", "world"));
System.out.println(StringHandling.INDEX("hello world!", ";"));
System.out.println(StringHandling.INDEX("hello world!", ";"));
\end{verbatim}

The routine returns a whole number which indicates the position of the first character specified, or indeed the first character of the substring specified. Otherwise, -1 is returned if no occurrences are found.
Calculating the length of a string

The LEN routine is easy to use, along with a Java component, to check the length of a string:

```java
System.out.println(StringHandling.LEN("hello world!"));
```

The check returns a whole number which indicates the length of the chain, including spaces and blank characters.

Deleting blank characters

The FTRIM routine is easy to use, along with a Java component, to delete blank characters from the start of a string:

```java
System.out.println(StringHandling.FTRIM("  Hello world  "));
```

The routine returns the string with the blank characters removed from the beginning.

TalendDataGenerator Routines

The TalendDataGenerator routines are functions which allow you to generate sets of test data. They are based on fictitious lists of first names, second names, addresses, towns and States provided by Talend. These routines are generally used when developing Jobs, using a tRowGenerator, for example, to avoid using production or company data.

To access the routines, double click on TalendDataGenerator under the system folder:

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>getFirstName</td>
<td>returns a first name taken randomly from a fictitious list.</td>
<td>TalendDataGenerator.getFirstName()</td>
</tr>
<tr>
<td>getLastName</td>
<td>returns a random surname from a fictitious list.</td>
<td>TalendDataGenerator.getLastName()</td>
</tr>
<tr>
<td>getUsStreet</td>
<td>returns an address taken randomly from a list of common American street names.</td>
<td>TalendDataGenerator.getUsStreet()</td>
</tr>
</tbody>
</table>
Using routines

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>getUsCity</td>
<td>returns the name of a town taken randomly from a list of American towns.</td>
<td>TalendDataGenerator.getUsCity()</td>
</tr>
<tr>
<td>getUsState</td>
<td>returns the name of a State taken randomly from a list of American States.</td>
<td>TalendDataGenerator.getUsState()</td>
</tr>
<tr>
<td>getUsStateId</td>
<td>returns an ID randomly taken from a list of IDs attributed to American States.</td>
<td>TalendDataGenerator.getUsStateId()</td>
</tr>
</tbody>
</table>

Note: No entry parameter is required as Talend provides the list of fictitious data.

You can customize the fictitious data by modifying the TalendDataGenerator routines. For further information on how to customize routines, see Customizing the system routines on page 431.

Generating fictitious data

It is easy to use the different functions to generate data randomly. Using a tJava component, you can, for example, create a list of fictitious client data using functions such as `getFirstName()`, `getLastName()`, `getUSCity()`:

```java
System.out.println(TalendDataGenerator.getFirstName());
System.out.println(TalendDataGenerator.getLastName());
System.out.println(TalendDataGenerator.getUsCity());
System.out.println(TalendDataGenerator.getUsState());
System.out.println(TalendDataGenerator.getUsStateId());
System.out.println(TalendDataGenerator.getUsStreet());
```

The set of data taken randomly from the list of fictitious data is displayed in the Run view:

```
Starting job test_routine at 14:44 04/03/2010.
[statistics] connecting to socket on port 3907
[statistics] connected
Jimmy
Arthur
Des Moines
Wyoming
UT
Milpas Street
[statistics] disconnected
Job test_routine ended at 14:44 04/02/2010. [exit code=0]
```

TalendDate Routines

The TalendDate routines allow you to carry out different kinds of operations and checks concerning the format of Date expressions.

To access these routines, double-click TalendDate under the system folder:
<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>addDate</td>
<td>Adds n days, n months, n hours, n minutes or n seconds to a Java date and returns the new date. The Date format is: yyyy, MM, dd, HH, mm, ss or SSS.</td>
<td>TalendDate.addDate("initial date string", "date format - eg.: yyyy/MM/dd", integer n,"format of the part of the date to which n is to be added - eg.:yyyy").</td>
</tr>
<tr>
<td>compareDate</td>
<td>Compares all or part of two dates according to the format specified. Returns 0 if the dates are identical, -1 if the first date is earlier and 1 if the second date is earlier.</td>
<td>TalendDate.compareDate(Date date1, Date date2, "format to be compared - eg.: yyyy-MM-dd")</td>
</tr>
<tr>
<td>diffDate</td>
<td>Returns the difference between two dates in terms of days, months or years according to the comparison parameter specified.</td>
<td>TalendDate.diffDate(Date1(), Date2(), "format of the part of the date to be compared - eg.:yyyy")</td>
</tr>
<tr>
<td>diffDateFloor</td>
<td>Returns the difference between two dates by floor in terms of years, months, days, hours, minutes, seconds or milliseconds according to the comparison parameter specified.</td>
<td>TalendDate.diffDateFloor(Date1(), Date2(), "format of the part of the date to be compared - eg.:MM")</td>
</tr>
<tr>
<td>formatDate</td>
<td>Returns a date string which corresponds to the format specified.</td>
<td>TalendDate.formatDate("date format - eg.: yyyy-MM-dd HH:mm:ss", Date() to be formatted)</td>
</tr>
<tr>
<td>formatDateLocale</td>
<td>Changes a date into a date/hour string according to the format used in the target country.</td>
<td>TalendDate.formatDateLocale ("format target", java.util.Date date, "language or country code")</td>
</tr>
<tr>
<td>getCurrentDate</td>
<td>Returns the current date. No entry parameter is required.</td>
<td>TalendDate.getCurrentDate()</td>
</tr>
<tr>
<td>getDate</td>
<td>Returns the current date and hour in the format specified (optional). This string can contain fixed character strings or variables linked to the date. By default, the string is returned in the format of DD/MM/CCYY.</td>
<td>TalendDate.getDate("Format of the string - ex: CCYY-MM-DD")</td>
</tr>
<tr>
<td>getFirstDayOfMonth</td>
<td>Changes the date of an event to the first day of the current month and returns the new date.</td>
<td>TalendDate.getFirstDayMonth(Date)</td>
</tr>
<tr>
<td>getLastDayOfMonth</td>
<td>Changes the date of an event to the last day of the current month and returns the new date.</td>
<td>TalendDate.getLastDayMonth(Date)</td>
</tr>
<tr>
<td>getPartOfDate</td>
<td>Returns part of a date according to the format specified. This string can contain fixed character strings or variables linked to the date.</td>
<td>TalendDate.getPartOfDate("String indicating the part of the date to be retrieved, "String in the format of the date to be parsed")</td>
</tr>
<tr>
<td>Routine</td>
<td>Description</td>
<td>Syntax</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>getRandomDate</td>
<td>Returns a random date, in the ISO format.</td>
<td>TalendDate.getRandomDate("format date of the character string", String minDate, String maxDate)</td>
</tr>
<tr>
<td>isDate</td>
<td>Checks whether the date string corresponds to the format specified. Returns the boolean value true or false according to the outcome.</td>
<td>TalendDate.isDate(Date() to be checked, "format of the date to be checked - eg.: yyyy-MM-dd HH:mm:ss")</td>
</tr>
<tr>
<td>parseDate</td>
<td>Changes a string into a Date. Returns a date in the standard format.</td>
<td>TalendDate.parseDate("format date of the string to be parsed", "string in the format of the date to be parsed")</td>
</tr>
<tr>
<td>parseDateInUTC</td>
<td>Changes a string into a Date in UTC. Returns a date in the UTC format.</td>
<td>TalendDate.parseDateInUTC("format date of the string to be parsed", "string in the format of the date to be parsed", "boolean about whether parsing is set to be lenient, that is to say, accepting the heuristic match with the format")</td>
</tr>
<tr>
<td>parseDateLocale</td>
<td>Parses a string according to a specified format and extracts the date. Returns the date according to the local format specified.</td>
<td>TalendDate.parseDateLocale("date format of the string to be parsed", "String in the format of the date to be parsed", "code corresponding to the country or language")</td>
</tr>
<tr>
<td>setDate</td>
<td>Modifies part of a date according to the part and value of the date specified and the format specified.</td>
<td>TalendDate.setDate(Date, whole n, "format of the part of the date to be modified - eg.:yyyy")</td>
</tr>
<tr>
<td>TO_CHAR</td>
<td>Converts a date to a character string.</td>
<td>TalendDate.TO_CHAR(date[,format])</td>
</tr>
<tr>
<td>TO_DATE</td>
<td>Converts a character string to a Date/Time datatype.</td>
<td>TalendDate.TO_DATE(string[, format])</td>
</tr>
</tbody>
</table>

For example, TalendDate.TO_DATE("04/24/2017 13:55:42.123") will return Mon Apr 24 13:55:42 CST 2017.
<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD_TO_DATE</td>
<td>Adds a specified amount to one part of a datetime value, and returns a date in the same format as the date you pass to the function.</td>
<td>TalendDate.ADD_TO_DATE(date, format, amount)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• date: the date value you want to change.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• format: the format string specifying the portion of the date value you want to change.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format strings for year: Y, YY, YYY, and YYYY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format strings for month: MONTH, MM, and MON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format strings for day: D, DD, DDD, DAY, and DY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format strings for hour: HH, HH12, and HH24.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format string for minute: MI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format string for second: SS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valid format string for millisecond: MS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• amount: the integer value specifying the amount of years, months, days, hours, and so on by which you want to change the date value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if TalendDate.getCurrentDate() returns Mon Apr 24 14:26:03 CST 2017,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TalendDate.ADD_TO_DATE(TalendDate.getCurrentDate(), "YY", 1) will return Tue Apr 24 14:26:03 CST 2018.</td>
</tr>
</tbody>
</table>

Warning:

Although "yyyy" and "YYYY" in the date format return the same year number in most cases, "YYYY" may not work as expected when used:

- at the first week of a year if the year does not start by the first day of the week.
- at the last week of a year if the year does not end by the last day of the week.

For example, when calculating what date it is 3 days before January 2, 2016, the code below would return a wrong date:

```java
System.out.println(TalendDate.formatDate("YYYY-MM-dd", TalendDate.addDate(TalendDate.TO_DATE("01/02/2016 08:10:30.123"), -3, "dd")));
```

while the following code would work as expected:

```java
System.out.println(TalendDate.formatDate("yyyy-MM-dd", TalendDate.addDate(TalendDate.TO_DATE("01/02/2016 08:10:30.123"), -3, "dd")));
```

Therefore, you should typically use 'yyyy', which represents calendar year.

Formatting a Date

The `formatDate` routine is easy to use, along with a `java` component:

```java
System.out.println(TalendDate.formatDate("dd-MM-yyyy", new Date()));
```

The current date is initialized according to the pattern specified by the `new Date()` Java function and is displayed in the Run view:
Using routines

Starting job routine at 17.28 25/02/2010.

2010-02-25 17:29:07
Job routine ended at 17.28 25/02/2010. [exit code=0]

Checking a Date

It is easy to use the `isDate` routine, along with a `tJava` component to check if a date expression is in the format specified:

```java
System.out.println(TalendDate.isDate("2010-02-09 00:00:00", "yyyy-MM-dd HH:mm:ss"));
```

A boolean is returned in the **Run** view:

Starting job routine at 17.36 25/02/2010.

true
Job routine ended at 17.36 25/02/2010. [exit code=0]

Comparing Dates

It is easy to use the `compareDate` routine, along with a `tJava` component to compare two dates, for example to check if the current date is identical to, earlier than or later than a specific date, according to the format specified.

```java
System.out.println(TalendDate.compareDate(new Date(), TalendDate.parseDate("yyyy-MM-dd", "2025/11/24")));
```

In this example the current date is initialized by the Java function `new Date()` and the value -1 is displayed in the **Run** view to indicate that the current date is earlier than the second date.

Starting job routine at 18.09 25/02/2010.

-1
Job routine ended at 18.09 25/02/2010. [exit code=0]

Configuring a Date

It is easy to use the `setDate` routine, along with a `tJava` component to change the year of the current date, for example:

```java
System.out.println(TalendDate.formatDate("yyyy/MM/dd HH:mm:ss", new Date()));
System.out.println(TalendDate.setDate(new Date(), 2011, "yyyy"));
```

The current date, followed by the new date are displayed in the **Run** view:

Starting job routine at 18:03 26/02/2010.

2010/02/26 18:03:14
Sat Feb 26 18:03:14 CET 2011
Job routine ended at 18.03 26/02/2010. [exit code=0]
Parsing a Date

It is easy to use the `parseDate` routine, along with a `tJava` component to change a date string from one format into another date format, for example:

```java
System.out.println(TalendDate.parseDate("yyyy-MM-dd HH:mm:ss", "1979/10/20 19:00:59");
```

The string is changed and returned in the date format:

Starting job routine at 11:58 01/03/2010.

Sat Oct 20 19:00:59 CET 1979
Job routine ended at 11:58 01/03/2010. [exit code=0]

Retrieving part of a Date

It is easy to use the `getPartOfDate` routine, along with a `tJava` component to retrieve part of a date, for example:

```java
Date D=TalendDate.parseDate("dd-MM-yyyy HH:mm:ss", "13-10-2010 12:23:45");
System.out.println(D.toString());
System.out.println(TalendDate.getPartOfDate("DAY_OF_MONTH", D));
System.out.println(TalendDate.getPartOfDate("MONTH", D));
System.out.println(TalendDate.getPartOfDate("YEAR", D));
System.out.println(TalendDate.getPartOfDate("DAY_OF_YEAR", D));
System.out.println(TalendDate.getPartOfDate("DAY_OF_WEEK", D));
```

In this example, the day of month (`DAY_OF_MONTH`), the month (`MONTH`), the year (`YEAR`), the day number of the year (`DAY_OF_YEAR`) and the day number of the week (`DAY_OF_WEEK`) are returned in the Run view. All the returned data are numeric data types.

Starting job routine at 10:52 17/12/2010.

[statistics] connecting to socket on port 3566
[statistics] connected
Wed Oct 13 12:23:45 CEST 2010
13
9
2010
286
4
[statistics] disconnected
Job routine ended at 10:52 17/12/2010. [exit code=0]

Note: In the Run view, the date string referring to the months (`MONTH`) starts with 0 and ends with 11: 0 corresponds to January, 11 corresponds to December.

Formatting the Current Date

It is easy to use the `getDate` routine, along with a `tJava` component, to retrieve and format the current date according to a specified format, for example:

```java
System.out.println(TalendDate.getDate("CCYY-MM-DD");
```

The current date is returned in the specified format (optional):
TalendString Routines

The TalendString routines allow you to carry out various operations on alphanumerical expressions.

To access these routines, double-click TalendString under the system folder. The TalendString class contains the following routines:

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>replaceSpecialCharForXML</td>
<td>returns a string from which the special characters (e.g., <, >, &...) have been replaced by equivalent XML characters.</td>
<td>TalendString.replaceSpecialCharForXML("string containing the special characters - eg.: Thelma & Louise")</td>
</tr>
<tr>
<td>checkCDATAForXML</td>
<td>identifies characters starting with <![CDATA[and ending with]]> as pertaining to XML and returns them without modification. Transforms the strings not identified as XML in a form which is compatible with XML and returns them.</td>
<td>TalendString.checkCDATAForXML("string to be parsed")</td>
</tr>
<tr>
<td>talendTrim</td>
<td>parses the entry string and removes the filler characters from the start and end of the string according to the alignment value specified: -1 for the filler characters at the end of the string, 1 for those at the start of the string and 0 for both. Returns the trimmed string.</td>
<td>TalendString.talendTrim("string to be parsed", "filler character to be removed", character position)</td>
</tr>
<tr>
<td>removeAccents</td>
<td>removes accents from a string and returns the string without the accents.</td>
<td>TalendString.removeAccents("String")</td>
</tr>
<tr>
<td>getAsciiRandomString</td>
<td>generates a random string with a specific number of characters.</td>
<td>TalendString.getAsciiRandomString(whole number indicating the length of the string)</td>
</tr>
</tbody>
</table>

Formatting an XML string

It is easy to run the replaceSpecialCharForXML routine along with a tJava component, to format a string for XML:

```java
System.out.println(TalendString.replaceSpecialCharForXML("Thelma & Louise"));
```

In this example, the & character is replaced in order to make the string XML compatible:
Using routines

Trimming a string

It is easy to use the `talendTrim` routine, along with a `tJava` component to remove the string padding characters from the start and end of the string:

```
System.out.println(TalendString.talendTrim("**talend open studio****","", -1));
System.out.println(TalendString.talendTrim("**talend open studio****","", 1));
System.out.println(TalendString.talendTrim("**talend open studio****","",0));
```

The star characters are removed from the start, then the end of the string and then finally from both ends:

Removing accents from a string

It is easy to use the `removeAccents` routine, along with a `tJava` component, to replace the accented characters, for example:

```
System.out.println(TalendString.removeAccents("sâcrebleü!"));
```

The accented characters are replaced with non-accented characters:

TalendStringUtil Routines

The `TalendStringUtil` class contains only one routine `DECODE` that allows you to search a value in a port. To access the routine, double-click `TalendStringUtil` under the `system` folder.

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECODE</td>
<td>Searches a port for a value you specify. If the function finds the value, it returns a result value, which you define. You can build an unlimited number of searches within a <code>DECODE</code> function.</td>
<td>TalendStringUtil.DECODE(value, defaultValue, search1, result1{, search2, result2}...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• value: the value you want to search.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• defaultValue: the value you want to return if the search does not find a matching value. The default value can be set to <code>null</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• search: the value for which you want to search. The search value must have the same datatype as the <code>value</code> argument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• result: the value you want to return if the search finds a matching value.</td>
</tr>
</tbody>
</table>
Below is an example of how to use the `DECODE` routine with a `tJava` component. You need to add a `tJava` component to a new Job, then enter the following code, which will search the value for 10, in the Code field on the Basic settings view of the `tJava` component.

```java
TalendStringUtil<Integer,String> example = new TalendStringUtil<Integer,String>();
System.out.println(example.DECODE(10, "error", 5, "five", 10, "ten", 15, "fifteen", 20, "twenty");
```

Note that you need to create a new object of the `TalendStringUtil` type, and better to use generic type to constrain the input data, then use the object to call the `DECODE` routine.

Press F6 to run the Job. It will return ten, which is the result of the value 10.
Customizing Talend Studio and setting Studio preferences

Customizing project settings

About this task
Talend Studio enables you to customize the information and settings of the project in progress, including the Palette, Job settings and Job version management, for example.

To customize project settings:

Procedure
1. Click on the Studio tool bar, or select File > Edit Project Properties from the menu bar. The Project Settings dialog box opens.
2. In the tree diagram to the left of the dialog box, select the setting you wish to customize and then customize it, using the options that appear to the right of the box.

Results
From the dialog box you can also export or import the full assemblage of settings that define a particular project:

- To export the settings, click on the Export button. The export will generate an XML file containing all of your project settings.
- To import settings, click on the Import button and select the XML file containing the parameters of the project which you want to apply to the current project.

Setting the compiler compliance level

About this task
The compiler compliance level corresponds to the Java version used for Job code generation.

For more information on the compiler compliance levels compatibility, see Talend Installation and Migration Guide.

Procedure
1. Click on the toolbar of the Studio main window, or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.
2. Expand the Build node and click Java Version.
3. From the JDK Compiler compliance level list, select the compiler compliance level you want to use, and then click OK.
Customizing shell command templates

About this task

Your Talend Studio provides a set of templates for the shell commands used to launch built Jobs. You can customize those templates based on your needs.

Procedure

1. Click on the toolbar of the Studio main window, or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.
2. Expand the Build > Shell Setting nodes and click Bat, Ps1, or Sh depending on the operating system on which your built Jobs are going to run.
3. Edit the code in the corresponding view based on your needs and click OK to finish your customization.
Customizing Maven build script templates

Your Talend Studio provides the following default templates for generating build scripts:

- Docker image build settings
- Maven script templates for standalone Job export
- A Maven script template for OSGI bundle export of Jobs

Based on the default, global build templates, you can create folder-level build scripts. Build scripts generated based on these templates are executed when building Jobs.

This section provides information on how to customize the build script templates. For information on how to build a Job, see Building Jobs on page 100.

Customizing the global build script templates

About this task

In the Project Settings dialog box, you can find and customize the default, global build script templates under the Build > Maven > Default node. These script templates apply to all Jobs or Routes in the root folder and all sub-folders except those with their own build script templates set up.

The following example shows how to customize the global POM script template for standalone Jobs:

Procedure

1. From the menu bar, click File > Edit Project properties to open the Project Settings dialog box.
2. Expand the Build > Maven > Default nodes, and then click the Standalone Job node to open the relevant view that displays the content of the POM script template.

![Standalone Job POM script template](image)

Note:

Depending on the Studio product you are using, the project settings items in your Studio may differ from what is shown above.
3. Modify the script code in the text panel and click **OK** to finish your customization.

Customizing the folder-level build script templates

About this task

Based on the global build script templates, you can add and customize script templates for Jobs folder by folder under the **Build > Maven > Setup custom scripts by folder** node. The build script templates added for a folder apply to all Jobs in that folder and all its sub-folders except those with their own build script templates set up.

The following example shows how to add and customize the POM script template for building standalone Jobs from Jobs in the **CA_customers** folder:

Procedure

1. From the menu bar, click **File > Edit Project properties** to open the **Project Settings** dialog box.
2. Expand the **Build > Maven > Setup custom scripts by folder > Job Designs > CA_customers** nodes, and then click the **Standalone Job** node to open the relevant view, from which you can add script templates or delete all existing templates.

![Project Settings Dialog](image)

Note: Depending on the Studio product you are using, the project settings items in your Studio may differ from what is shown above.

3. Click the **Create Maven files** button to create script templates based on the global templates for standalone Jobs.
4. Select the script template you want to customize, \texttt{pom.xml} in this example, to display the script code in the code view. Modify the script code in the text panel and click \texttt{OK} to finish your customization.

Once the build script templates are created for a folder, you can also go to the directory where the XML files are stored, \texttt{<studio_installation_directory>\workspace\<project_name>\process\CA_customers} in this example, and directly modify the XML file of the template you want to customize. Your changes will affect all Jobs in the folder and in all sub-folders except those with their own script set up.

Managing deployment versions of Jobs

About this task

Through the \textbf{Project Settings} dialog box, you can manage in a batch manner or individually the deployment version of each Job item to be published to the artifact repository.

Procedure

1. On the toolbar of the Studio main window, click \textcolor{blue}{\textbf{File}} or click \textcolor{blue}{\textbf{File > Edit Project Properties}} from the menu bar to open the \textbf{Project Settings} dialog box.
2. In the tree view of the dialog box, expand \textbf{Build > Maven} and select \textbf{Deployment Versioning} to open the corresponding view.
3. In the Repository tree view, expand the node holding the items you want to manage their deployment versions and then select the check boxes of these items.
 The selected items are displayed in the Items list to the right along with their current version in the Version column.

4. Make changes as required:
 - To set a deployment version for all the items, enter the version in the Project version field, select the Apply project version to items option, and click Apply version.
 - Click Select all subJobs if you want to update all of the subjobs dependent on the selected items at the same time.
 - To set the deployment version for one or more items individually, select the Change the version of each item individually option, select the item or items in the table below the Options area, enter the deployment version New version field, and click Apply.
 - Select the Use job versions option if you want to use the latest Job versions as the deployment versions for the selected items.
 - If you want to publish a snapshot version of the item or items, select the Use snapshot check box before applying the version setting.

5. Click OK to apply your changes and close the dialog box.

6. If any of the selected Jobs is opened in the design workspace, click OK in a new dialog box and then save your Job to apply the new deployment version to it.
Results

You can also set the deployment version of a Job in the Job view of it once opened in the design workspace. For more information, see Customizing deployment of a Job.

The deployment version settings you make in the Project Settings dialog box will be reflected in the Deployment tab in the Job view of the relevant item or items, and vice versa.

For more information on Job version management, see Managing Job versions on page 112 and Version management on page 463.

For more information on how to publish a Job from the Studio to the artifact repository, see Publishing to the Artifact Repository.

Palette Settings

About this task

You can customize the settings of the Palette display so that only the components used in the project are loaded. This will allow you to launch the Studio more quickly.

To customize the Palette display settings:

Procedure

1. On the toolbar of the Studio’s main window, click or click File > Edit Project Properties on the menu bar to open the Project Settings dialog box.
Note:
In the General view of the Project Settings dialog box, you can add a project description, if you did not do so when creating the project.

2. In the tree view of the Project Settings dialog box, expand Designer and select Palette Settings. The settings of the current Palette are displayed in the panel to the right of the dialog box.

3. Select one or several components, or even set(s) of components you want to remove from the current project’s Palette.

4. Use the left arrow button to move the selection onto the panel on the left. This will remove the selected components from the Palette.

5. To re-display hidden components, select them in the panel on the left and use the right arrow button to restore them to the Palette.

6. Click Apply to validate your changes and OK to close the dialog box.

Results

Note:
To get back to the Palette default settings, click Restore Defaults.

For more information on the Palette, see Changing the Palette layout and settings on page 473.

Type mapping

You can set the parameters for type conversion in Talend Studio, from Java towards databases and vice versa.

Accessing mapping files

Procedure

1. On the toolbar of the Studio main window, click Edit Project Properties or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.

2. In the tree view of the dialog box, expand General and select Metadata of Talend Type to open the relevant view.
The **Metadata Mapping File** area lists the XML files that hold the conversion parameters for each database type used in Talend Studio.

- You can import, export, or delete any of the conversion files by clicking **Import**, **Export** or **Remove** respectively.
- You can modify a conversion file according to your needs by selecting the file and clicking the **Edit** button to open the **Edit mapping file** dialog box and then modify the XML code directly in the open dialog box.

Frequently used attributes in dbType element

Using attributes in the conversion mappings, you can define the default values or behavior of the relevant schema columns. The table below describes the frequently used attributes in the `dbType` element.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ignoreLen</td>
<td>When set to <code>true</code>, the length that you set for newly added columns of the type in schema (by Edit schema) on components will be ignored.</td>
</tr>
<tr>
<td>ignorePre</td>
<td>When set <code>true</code>, the precision that you set for newly added columns of the type in schema (by Edit schema) on components will be ignored.</td>
</tr>
<tr>
<td>default</td>
<td>When set <code>true</code>, the type defined in this element will be the default type of newly added columns (by Edit schema) on components.</td>
</tr>
<tr>
<td>defaultLength</td>
<td>Sets the default length of newly added columns of the type (by Edit schema) on components.</td>
</tr>
<tr>
<td>defaultPrecision</td>
<td>Sets the default precision of newly added columns of the type (by Edit schema) on components.</td>
</tr>
</tbody>
</table>
Version management

About this task

You can also manage the version of each item in the Repository tree view through General > Version Management of the Project Settings dialog box.

To do so:

Procedure

1. On the toolbar of the Studio main window, click or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.

2. In the tree view of the dialog box, expand General and select Version Management to open the corresponding view.

3. In the Repository tree view, expand the node holding the items you want to manage their versions and then select the check boxes of these items.

 The selected items display in the Items list to the right along with their current version in the Version column and the new version set in the New Version column.

4. Make changes as required:
 - In the Options area, select the Change all items to a fixed version option to change the version of the selected items to the same fixed version.
 - Click Revert if you want to undo the changes.
 - Click Select all dependencies if you want to update all of the items dependent on the selected items at the same time.
• Click **Select all subJobs** if you want to update all of the subJobs dependent on the selected items at the same time.

• To increment each version of the items, select the **Update the version of each item** option and change them manually.

• Select the **Fix tRunjob versions if Latest** check box if you want the father job of current version to keep using the child Job(s) of current version in the tRunJob to be versioned, regardless of how their versions will update. For example, a tRunJob will update from the current version 1.0 to 1.1 at both father and child levels. Once this check box is selected, the father Job 1.0 will continue to use the child Job 1.0 rather than the latest one as usual, say, version 1.1 when the update is done.

Warning: To use this check box, the father Job must be using child Job(s) of the latest version as current version in the tRunjob to be versioned, by having selected the Latest option from the drop-down version list in the Component view of the child Job(s).

5. Click **OK** to apply your changes and close the dialog box.

Results

Note: For more information on version management, see Managing Job versions on page 112.

Status management

About this task

You can also manage the status of each item in the Repository tree view through **General > Status Management** of the Project Settings dialog box.

To do so:

Procedure

1. On the toolbar of the Studio main window, click 🖋️ or click **File > Edit Project Properties** from the menu bar to open the Project Settings dialog box.

2. In the tree view of the dialog box, expand **General** and select **Status Management** to open the corresponding view.
3. In the **Repository** tree view, expand the node holding the items you want to manage their status and then select the check boxes of these items.

 The selected items display in the **Items** list to the right along with their current status in the **Status** column and the new status set in the **New Status** column.

4. In the **Options** area, select the **Change all technical items to a fixed status** check box to change the status of the selected items to the same fixed status.

5. Click **Revert** if you want to undo the changes.

6. To increment each status of the items, select the **Update the version of each item** check box and change them manually.

7. Click **Apply** to apply your changes and then **OK** to close the dialog box.

Results

Note:

For further information about Job status, see Status settings on page 470.

Job Settings

About this task

You can automatically use **Implicit Context Load** and **Stats and Logs** settings you defined in the **Project Settings** dialog box of the actual project when you create a new Job.

To do so:
Procedure

1. On the toolbar of the Studio main window, click \[\text{File} \to \text{Edit Project Properties}\] or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.

2. In the tree view of the dialog box, click the Job Settings node to open the corresponding view.

3. Select the Use project settings when create a new job check boxes of the Implicit Context Load and Stats and Logs areas.

4. Click Apply to validate your changes and then OK to close the dialog box.

Stats & Logs

About this task

When you execute a Job, you can monitor the execution through the tStatCatcher Statistics option or through using a log component. This will enable you to store the collected log data in .csv files or in a database.

You can then set up the path to the log file and/or database once for good in the Project Settings dialog box so that the log data get always stored in this location.

To do so:

Procedure

1. On the toolbar of the Studio main window, click \[\text{File} \to \text{Edit Project Properties}\] or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.

2. In the tree view of the dialog box, expand the Job Settings node and then click Stats & Logs to display the corresponding view.
<table>
<thead>
<tr>
<th>Stats & Logs Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use statistics (tStatCatcher)</td>
<td>Enables statistics collection.</td>
</tr>
<tr>
<td>Use logs (tLogCatcher)</td>
<td>Enables log collection.</td>
</tr>
<tr>
<td>Use volumetrics (tFlowMeterCatcher)</td>
<td>Enables volumetrics collection.</td>
</tr>
<tr>
<td>On Console</td>
<td>Enables console output for log data.</td>
</tr>
<tr>
<td>On Files</td>
<td>Enables file output for log data.</td>
</tr>
<tr>
<td>File Path</td>
<td>Specifies the file path for log data.</td>
</tr>
<tr>
<td>Stats File Name</td>
<td>Specifies the name of the statistics file.</td>
</tr>
<tr>
<td>Log File Name</td>
<td>Specifies the name of the log file.</td>
</tr>
<tr>
<td>Meter File Name</td>
<td>Specifies the name of the meter file.</td>
</tr>
<tr>
<td>Encoding</td>
<td>Specifies the encoding for log data.</td>
</tr>
<tr>
<td>On Databases</td>
<td>Enables database output for log data.</td>
</tr>
<tr>
<td>Property Type</td>
<td>Specifies the property type for database connection.</td>
</tr>
<tr>
<td>Db Type</td>
<td>Specifies the database type.</td>
</tr>
<tr>
<td>Host</td>
<td>Specifies the host name for database connection.</td>
</tr>
<tr>
<td>Port</td>
<td>Specifies the port number for database connection.</td>
</tr>
<tr>
<td>Db Name</td>
<td>Specifies the database name.</td>
</tr>
<tr>
<td>Additional parameters</td>
<td>Specifies additional parameters for database connection.</td>
</tr>
<tr>
<td>User</td>
<td>Specifies the user name for database connection.</td>
</tr>
<tr>
<td>Password</td>
<td>Specifies the password for database connection.</td>
</tr>
<tr>
<td>Stats Table</td>
<td>Specifies the statistics table.</td>
</tr>
<tr>
<td>Logs Table</td>
<td>Specifies the logs table.</td>
</tr>
<tr>
<td>Meter Table</td>
<td>Specifies the meter table.</td>
</tr>
<tr>
<td>Catch runtime errors</td>
<td>Enables catching of runtime errors.</td>
</tr>
<tr>
<td>Catch user errors</td>
<td>Enables catching of user errors.</td>
</tr>
<tr>
<td>Catch user warnings</td>
<td>Enables catching of user warnings.</td>
</tr>
</tbody>
</table>

Note:

If you know that the preferences for Stats & Logs will not change depending upon the context of execution, then simply set permanent preferences. If you want to apply the Stats & Logs settings individually, then it is better to set these parameters directly onto the Stats & Logs view. For more information about this view, see Automating the use of statistics & logs on page 94.

3. Select the **Use Statistics**, **Use Logs** and **Use Volumetrics** check boxes where relevant, to select the type of log information you want to set the path for.

4. Select a format for the storage of the log data: select either the **On Files** or **On Database** check box. Or select the **On Console** check box to display the data in the console.

Results

The relevant fields are enabled or disabled according to these settings. Fill out the **File Name** between quotes or the **DB name** where relevant according to the type of log information you selected.

You can now store the database connection information in the **Repository**. Set the **Property Type** to **Repository** and browse to retrieve the relevant connection metadata. The fields get automatically completed.

Note:

Alternatively, if you save your connection information in a Context, you can also access them through **Ctrl+Space**.
Context settings

About this task
You can define default context parameters you want to use in your Jobs.
To do so:

Procedure
1. On the toolbar of the Studio main window, click ✉️ or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box.
2. In the tree view of the dialog box, expand the Job Settings node and then select the Implicit Context Load check box to display the configuration parameters of the Implicit tContextLoad feature.

 ![Implicit context load](image)

3. Select the From File or From Database check boxes according to the type of file you want to store your contexts in.
4. For files, fill in the file path in the From File field and the field separator in the Field Separator field.
5. For databases, select the Built-in or Repository mode in the Property Type list and fill in the next fields.
6. Fill in the Table Name and Query Condition fields.
7. Select the type of system message you want to have (warning, error, or info) in case a variable is loaded but is not in the context or vice versa.
8. Click Apply to validate your changes and then OK to close the dialog box.

Applying Project Settings

About this task
From the Project Settings dialog box, you can choose to which Job in the Repository tree view you want to apply the Implicit Context Load and Stats and Logs settings.
To do so:
Procedure

1. On the toolbar of the Studio main window, click 🖨️ or click **File > Edit Project Properties** from the menu bar to open the **Project Settings** dialog box.

2. In the tree view of the dialog box, expand the **Job Settings** node and then click **Use Project Settings** to display the use of **Implicit Context Load** and **Stats and Logs** option in the Jobs.

3. In the **Implicit Context Load Settings** area, select the check boxes corresponding to the Jobs in which you want to use the implicit context load option.

4. In the **Stats Logs Settings** area, select the check boxes corresponding to the Jobs in which you want to use the stats and logs option.

5. Click **Apply** to validate your changes and then **OK** to close the dialog box.

Configuring Log4j

About this task

Your Talend Studio includes the Apache logging utility log4j to provide logging at runtime. You can enable or disable log4j loggers in components and customize the log4j configuration globally for the project.

To do so:

Procedure

1. On the toolbar of the Studio main window, click 🖨️ or click **File > Edit Project Properties** from the menu bar to open the **Project Settings** dialog box.

2. In the tree view of the dialog box, click the **Log4j** node to open the **Log4j** view.
3. Select the **Activate log4j in components** check box to activate the log4j feature.

 By default, the log4j feature is activated when a project is created.

4. Change the global log4j configuration by modifying the XML instructions in the **Log4j template** area.

 For example, to configure the root logger to output all debug or higher messages, go to the **Root Logger** section and set the value attribute of the **priority** element of the root node to **debug**.

 For more information on the log4j parameters, see http://wiki.apache.org/logging-log4j/Log4jXmlFormat.

Results

You can also define the output level of log messages to override the global configuration at Job execution. For more information, see Customizing log4j output level at runtime on page 126.

Status settings

About this task

In the **Project Settings** dialog box, you can also define the Status.

To do so:

Procedure

1. On the toolbar of the Studio main window, click ![edit](image) or click **File > Edit Project Properties** from the menu bar to open the **Project Settings** dialog box.
2. In the tree view of the dialog box, click the **Status** node to define the main properties of your **Repository** tree view elements.

 The main properties of a repository item gathers information data such as **Name**, **Purpose**, **Description**, **Author**, **Version** and **Status** of the selected item. Most properties are free text fields, but the **Status** field is a drop-down list.

 ![Project Settings](image1)

3. Click the **New...** button to display a dialog box and populate the **Status** list with the most relevant values, according to your needs. Note that the **Code** cannot be more than 3-character long and the **Label** is required.

 ![Create new status](image2)

 Talend makes a difference between two status types: **Technical status** and **Documentation status**. The **Technical status** list displays classification codes for elements which are to be running on stations, such as Jobs, metadata or routines.

 The **Documentation status** list helps classifying the elements of the repository which can be used to document processes (Business Models or documentation).

4. Once you completed the status setting, click **OK** to save
The **Status** list will offer the status levels you defined here when defining the main properties of your Job designs and business models.

5. In the **Project Settings** dialog box, click **Apply** to validate your changes and then **OK** to close the dialog box.

Security settings

About this task

You can hide or show your passwords on your documentations, metadata, contexts, and so on when they are stored in the **Repository** tree view.

To hide your password:

Procedure

1. On the toolbar of the Studio main window, click ![File] or click **File > Edit Project Properties** from the menu bar to open the **Project Settings** dialog box.

2. In the tree view of the dialog box, click the **Security** node to open the corresponding view.

3. Select the **Hide passwords** check box to hide your password.

 Note:

 If you select the **Hide passwords** check box, your password will be hidden for all your documentations, contexts, and so on, as well as for your component properties when you select **Repository** in the **Property Type** field of the component **Basic settings** view, as in the screen capture below. However, if you select **Built-in**, the password will not be hidden.

4. In the **Project Settings** dialog box, click **Apply** to validate your changes and then **OK** to close the dialog box.

Customizing the workspace

When using Talend Studio to design a data integration Job, you can customize the **Palette** layout and setting according to your needs. You can as well change the position of any of the panels that exist in the Studio to meet your requirements.

Note:

All the panels, tabs, and views described in this documentation are specific to Talend Studio. Some views listed in the **Show View** dialog box are Eclipse specific and are not subjects of this documentation. For information on such views, check Eclipse online documentation at http://www.eclipse.org/documentation/.
Changing the Palette layout and settings

The Palette contains all basic technical components and shapes as well as branches for Job design and business modeling in the design workspace. These components and shapes as well as branches are grouped in families and sub-families.

Talend Studio enables you to change the layout and position of your Palette according to your requirements. The below sections explain all management options you can carry out on the Palette.

Showing, hiding the Palette and changing its position

By default, the Palette might be hidden on the right-hand side of your design workspace.

If you want the Palette to show permanently, click the left arrow, at the upper right corner of the design workspace, to make it visible at all times.

You can also move around the Palette outside the design workspace within the Integration perspective. To enable the standalone Palette view, select from the menu Window > Show View... > General > Palette.

If you want to set the Palette apart in a panel, right-click the Palette head bar and select Detached from the contextual menu. The Palette opens in a separate view that you can move around wherever you like within the perspective.

Displaying/hiding components families

You can display/hide components families according to your needs in case of visibility problems, for example. To do so, right-click the Palette and select Display folder to display components families and Hide folder to display components without their families.
Note:
This display/hide option can be very useful when you are in the **Favorite** view of the **Palette**. In this view, you usually have a limited number of components that if you display without their families, you will have them in an alphabetical list and thus facilitate their usage. For more information about the **Palette** favorite, see Setting the Palette favorite on page 474.

Maintaining a component family open

If you often use one or many component families, you can add a pin on their names to stop them from collapsing when you select components from other families.

To add a pin, click the pin icon on the top right-hand corner of the family name.

Filtering the Palette

You can select the components to be shown or hidden on your **Palette**. You can also add to the **Palette** the components that you developed yourself.

For more information about filtering the **Palette**, see Palette Settings on page 460.

For more information about adding components to the **Palette**, either from **Talend** or from your own development, see Downloading/uploading Talend Community components on page 53 and/or How to define the user component folder (Talend > Components) on page 489.

Setting the Palette favorite

About this task

The **Palette** offers you search and favorite possibilities that by turn facilitate its usage.

You can add/remove components to/from the **Palette** favorite view in order to have a quick access to all the components that you mostly use.

To do so:

Procedure

1. From the **Palette**, right-click the component you want to add to **Palette** favorite and select **Add To Favorite**.
2. Do the same for all the components you want to add to the **Palette** favorite then click the **Favorite** button in the upper right corner of the **Palette** to display the **Palette** favorite.

Only the components added to the favorite are displayed.

To delete a component from the **Palette** favorite, right-click the component you want to remove from the favorite and select **Remove From Favorite**.

To restore the **Palette** standard view, click the **Standard** button in the upper right corner of the **Palette**.
Changing components layout in the Palette

You can change the layout of the component list in the Palette to display them in columns or in lists, as icons only or as icons with short description.

You can also enlarge the component icons for better readability of the component list.

To do so, right-click any component family in the Palette and select the desired option in the contextual menu or click **Settings** to open the Palette Settings window and fine-tune the layout.

Changing panels positions

All panels in the open Studio can be moved around according to your needs.

Procedure

- Click the head border of a panel or click a tab, hold down the mouse button and drag the panel to the target destination, and then release to change the panel position.
- Click the minimize/maximize icons (−/+) to minimize the corresponding panel or maximize it. For more information on how to display or hide a panel/view, see Displaying Job configuration tabs/views on page 477.
- Click the close icon (×) to close a tab/view. To reopen a view, click **Window > Show View > Talend**, then click the name of the panel you want to add to your current view.
• If the Palette does not show or if you want to set it apart in a panel, go to Window > Show view... > General > Palette.

 The Palette opens in a separate view that you can move around wherever you like within the perspective.

Displaying Job configuration tabs/views

The configuration tabs are located in the lower half of the design workspace of the Integration perspective. Each tab opens a view that displays detailed information about the selected element in the design workspace.

![Design workspace with configuration tabs](image)

The Component, Run Job, and Contexts, and Oozie scheduler views gather all information relative to the graphical elements selected in the design workspace or the actual execution of the open Job.

Note:

By default, when you launch Talend Studio for the first time, the Problems tab will not be displayed until the first Job is created. After that, Problems tab will be displayed in the tab system automatically.

The Modules and Schedulerdeprecated tabs are located in the same tab system as the Component, Logs and Run Job tabs. Both views are independent from the active or inactive Jobs open on the design workspace.

Some of the configuration tabs are hidden by default such as the Error Log, Navigator, Job Hierarchy, Problems, Modules and Schedulerdeprecated tabs. You can show hidden tabs in this tab system and directly open the corresponding view if you select Window > Show view and then, in the open dialog box, expand the corresponding node and select the element you want to display.
Filtering entries listed in the Repository tree view

Talend Studio provides the possibility to choose what nodes, Jobs or items you want to list in the Repository tree view.

You can filter the Repository tree view by job name, Job status, the user who created the Job/items or simply by selecting/clearing the check box next to the node/ item you want to display/hide in the view. You can also set several filters simultaneously.

Filtering by Job name

About this task

To filter Jobs listed in the Repository tree view by Job name, complete the following:

Procedure

1. In the Studio, click the icon in the upper right corner of the Repository tree view and select Filter settings from the contextual menu.

The Repository Filter dialog box displays.

2. Select the Filter By Name check box.

The corresponding field becomes available.
3. Follow the rules set below the field when writing the patterns you want to use to filter the Jobs. In this example, we want to list in the tree view all Jobs that start with `tMap` or `test`.

4. In the Repository Filter dialog box, click OK to validate your changes and close the dialog box. Only the Jobs that correspond to the filter you set are displayed in the tree view, those that start with `tMap` and `test` in this example.

Results

Note:
You can switch back to the by-default tree view, which lists all nodes, Jobs and items, by simply clicking the icon. This will cause the green plus sign appended on the icon to turn to a minus red sign.

Filtering by user

About this task
To filter entries in the Repository tree view by the user who created the Jobs/items, complete the following:

Procedure
1. In the Studio, click the icon in the upper right corner of the Repository tree view and select Filter settings from the contextual menu. The Repository Filter dialog box displays.
2. Clear the All Users check box.
 The corresponding fields in the table that follows become available.

 This table lists the authentication information of all the users who have logged in to Talend Studio and created a Job or an item.

3. Clear the check box next to a user if you want to hide all the Jobs/items created by him/her in the Repository tree view.

4. Click OK to validate your changes and close the dialog box.
 All Jobs/items created by the specified user will disappear from the tree view.
Results

Note:
You can switch back to the by-default tree view, which lists all nodes, Jobs and items, by simply clicking the icon . This will cause the green plus sign appended on the icon to turn to a minus red sign ().

Filtering by Job status

About this task
To filter Jobs in the Repository tree view by the job status, complete the following:

Procedure

1. In the Studio, click the icon in the upper right corner of the Repository tree view and select Filter settings from the contextual menu.
 The Repository Filter dialog box displays.

2. In the Filter By Status area, clear the check boxes next to the status type if you want to hide all the Jobs that have the selected status.
3. Click **OK** to validate your changes and close the dialog box.

 All Jobs that have the specified status will disappear from the tree view.

Results

Note:

You can switch back to the by-default tree view, which lists all nodes, Jobs and items, by simply clicking the icon. This will cause the green plus sign appended on the icon to turn to a minus red sign.

Choosing what repository nodes to display

About this task

To filter repository nodes, complete the following:

Procedure

1. In the **Integration** perspective of the Studio, click the icon in the upper right corner of the **Repository** tree view and select **Filter settings** from the contextual menu.

 The **Repository Filter** dialog box displays.
2. Select the check boxes next to the nodes you want to display in the Repository tree view.
Consider, for example, that you want to show in the tree view all the Jobs listed under the **Job Designs** node, three of the folders listed under the **SQL Templates** node and one of the metadata items listed under the **Metadata** node.

3. Click **OK** to validate your changes and close the dialog box.

 Only the nodes/folders for which you selected the corresponding check boxes are displayed in the tree view.

![Diagram of tree view]

Results

Note:

If you do not want to show all the Jobs listed under the **Job Designs** node, you can filter the Jobs using the **Filter By Name** check box. For more information on filtering Jobs, see Filtering by Job name on page 478.
Setting Talend Studio preferences

You can define various properties for all the perspectives of Talend Studio according to your needs and preferences.

Numerous settings you define can be stored in the Preference and thus become your default values for all new Jobs you create.

The following sections describe specific settings that you can set as preference.

First, click the Window menu of Talend Studio, then select Preferences.

Java Interpreter path (Talend)

About this task

The Java Interpreter path is set based on the location of the Java file on your computer (for example C:\Program Files\Java\jre1.8.0_51\bin\java.exe).

To customize your Java Interpreter path:

Procedure

1. If needed, click the Talend node in the tree view of the Preferences dialog box.
2. Enter a path in the Java interpreter field if the default directory does not display the right path.

Results

On the same view, you can also change the preview limit and the path to the temporary files or the OS language.

Designer preferences (Talend > Appearance)

About this task

You can set component and Job design preferences to let your settings be permanent in the Studio.
Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend > Appearance** nodes.
3. Click **Designer** to display the corresponding view.

 On this view, you can define the way component names and hints will be displayed.

4. Select the relevant check boxes to customize your use of the Talend Studio design workspace.

Artifact repository connection preferences (Talend > Artifact Repository)

About this task

You can configure how long your Talend Studio keeps connection with the Artifact repository, from which your Talend Studio retrieves updates and custom libraries and to which you can publish your artifacts.

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend** node and click **Artifact Repository** to display the relevant view.
3. In the **Timeout for artifact repository connection (ms)** field, specify the time in milliseconds you want your Talend Studio to wait for an interaction with the Artifact repository server before cutting the connection, 0 for an infinite timeout.

4. Click **Apply** to apply your changes; click **OK** to validate the settings and close the **Preferences** dialog box.

Update server preferences (Talend > Artifact Repository > Libraries)

About this task

You can set preferences for Talend Studio to the check for updates of custom libraries on the Artifact repository server.

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend** and **Artifact Repository** nodes in succession and then click **Libraries** to display the relevant view.
3. Set the preferences according to your needs:
 - In the **Jars check frequency** field, specify how often you want your Talend Studio to check for updates:
 - –1 if you don’t want your Talend Studio to check for updates at all.
 - 0 if you want your Talend Studio to check for updates at any action that needs a Jar or Jars, for example when a Job is built or executed from the Studio.
 - the number of days between two checks.
4. Click **Apply** to apply your changes; click **OK** to validate the settings and close the **Preferences** dialog box.

Bonita BPM Portal preferences (Talend > Bonita BPM Portal)

About this task

When creating a BPM service, you can set its URI as well as the connection information to the Bonita BPM Portal.

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend > Bonita BPM Portal** node.
3. Fill in the information as follows.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username and Password</td>
<td>Enter the username and password to connect to the Bonita BPM Portal. By default, it is install and install.</td>
</tr>
</tbody>
</table>
4. Click **Apply** and then **OK** to validate the set preferences and close the dialog box.

How to define the user component folder (Talend > Components)

A new framework is available to build custom components and must be used from this version onwards. Refer to Developing a component using Talend Component Kit. This document still applies for components downloaded from Talend Exchange.

You can download and install custom components for use in the Integration perspective of Talend Studio.

For further information about downloading and installing components from Talend Exchange, see Talend Help Center (https://help.talend.com).

The following procedure applies only to the external components. For the preferences of all the components, see How to change specific component settings (Talend > Components) on page 490.

The user component folder is the folder that contains the components you created and/or the ones you downloaded from Talend Exchange. To define it, proceed as follows:

Procedure

1. In the tree view of the Preferences dialog box, expand the Talend node and select Components.

2. Enter the **User component folder** path or browse to the folder that contains the custom components to be added to the Palette of the Studio.

 In order to be imported to the Palette of the Studio, the custom components have to be in separate folders located at the root of the component folder you have defined.

3. Click **Apply** and then **OK** to validate the preferences and close the dialog box.

 The Studio restarts and the external components are added to the Palette.
Results

This configuration is stored in the metadata of the workspace. If the workspace of Talend Studio changes, you have to reset this configuration again.

How to change specific component settings (Talend > Components)

About this task

You can modify some specific component settings such as the default mapping link display.

The following procedure applies to the external components and to the components included in the Studio. For the preferences specific to the user components, see How to define the user component folder (Talend > Components) on page 489.

To modify those specific components settings, proceed as follows:

Procedure

1. In the tree view of the Preferences dialog box, expand the Talend node and select Components.

2. From the Default mapping links display as list, select the mapping link type you want to use in the tMap.

3. Under tRunJob, select the check box if you do not want the corresponding Job to open upon double clicking a tRunJob component.

 Note: You will still be able to open the corresponding Job by right clicking the tRunJob component and selecting Open tRunJob Component.

4. Under Component Assist, select the Enable Component Creation Assistant check box if you want to be able to add a component by typing its name in the design workspace. For more information, see Adding components to the Job on page 27.

5. Click Apply and then OK to validate the set preferences and close the dialog box.

Results

This configuration is stored in the metadata of the workspace. If the workspace of Talend Studio changes, you have to reset this configuration again.
Documentation preferences (Talend > Documentation)

About this task
You can include the source code on the generated documentation.

Procedure
1. From the menu bar, click Window > Preferences to open the Preferences dialog box.
2. Expand the Talend node and click Documentation to display the documentation preferences.
3. Customize the documentation preferences according to your needs:
 - Select the Source code to HTML generation check box to include the source code in the HTML documentation that you will generate.
 - Select the Use CSS file as a template when export to HTML check box to activate the CSS File field if you need to use a CSS file to customize the exported HTML files.

Results
For more information on documentation, see Generating HTML documentation on page 115 and Documentation tab on page 48.

Exchange preferences (Talend > Exchange)

About this task
You can set preferences related to your connection with Talend Exchange, which is part of the Talend Community, in Talend Studio. To do so:

Procedure
1. From the menu bar, click Window > Preferences to open the Preferences dialog box.
2. Expand the Talend node and click Exchange to display the Exchange view.
3. Set the Exchange preferences according to your needs:
 - If you are not yet connected to the Talend Community, click Sign In to go to the Connect to Talend Community page to sign in using your Talend Community credentials or create a Talend Community account and then sign in.
If you are already connected to the Talend Community, your account is displayed and the Sign In button becomes Sign Out. To get disconnected from the Talend Community, click Sign Out.

- By default, while you are connected to the Talend Community, whenever an update to an installed community extension is available, a dialog box appears to notify you about it. If you often check for community extension updates and you do not want that dialog box to appear again, clear the Notify me when updated extensions are available check box.

Metadata Bridge preferences (Talend > Import/Export)

About this task

You can set preferences for the Talend Metadata Bridge to make it work the way you want.

Procedure

1. From the menu bar, click Window > Preferences to display the Preferences dialog box.
2. Expand the Talend and Import/Export nodes in succession and then click Metadata Bridge to display the relevant view.

 ![Metadata Bridge preferences](image)

3. Set the preferences according to your use of the Talend Metadata Bridge:
 - In the Location area, select the Embedded option to use the MIMB tool embedded in the Talend Metadata Bridge. This is the default option.

 To use the MIMB tool you have installed locally, select Local Directory and specify the installation directory of the MIMB tool.

 - In the Temp folder field, specify the directory to hold the temporary files generated during metadata import/export executions, if you do not want to use the default directory.
• In the Log folder field, specify the directory to hold the logs files generated during metadata import/export executions, if you do not want to use the default directory.
• Select the Show detailed logs check box to generate detailed log files during metadata import/export executions.

4. Click **Apply** to apply your changes; click **OK** to validate the settings and close the **Preferences** dialog box.

Results

For more information on using the **Talend** Metadata Bridge to import/export metadata, see Talend Help Center (https://help.talend.com).

Language preferences (Talend > Internationalization)

About this task

You can set language preferences in Talend Studio. To do so:

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend** node and click **Internationalization** to display the relevant view.

![Internationalization dialog box](image)

3. From the **Local Language** list, select the language you want to use for the graphical interface of Talend Studio.
4. Click **Apply** and then **OK** to validate your change and close the **Preferences** dialog box.
5. Restart the Studio to display the graphical interface in the selected language.

Palette preferences (Talend> Palette Settings)

About this task

From **Palette Settings** view you can set preferences for component searching from the **Palette** and even from the component list that appears on the design workspace when adding a component without using the **Palette**.

Procedure

1. From the menu bar, click **Window > Preferences** to display the **Preferences** dialog box.
2. Expand the **Talend** node and click **Palette Settings** to display the **Palette Settings** view.
3. To limit the number of components that can be displayed on the Recently Used list, enter your preferred number in the **Recently used list size** field.

4. To enable searching a component using a phrase that describes the function or purpose of the component as search keywords in the search field of the Palette or in the text field that appears on the design workspace, select the **Also search from Help when performing a component searching** check box. With this check box selected, you can find your component on the Palette or on the component list on the design workspace as long as you can find it from the F1 Help information by using the same descriptive phrase as keywords.

5. To change the number of the search result entries when using a descriptive phrase as search key words, enter your preferred number in the **Result limitation from Help** field.

Performance preferences (Talend > Performance)

You can set performance preferences according to your use of Talend Studio. To do so, proceed as follows:

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend** node and click **Performance** to display the repository refresh preference.
3. Set the performance preferences according to your use of Talend Studio:

- Select the **Deactivate auto detect/update after a modification in the repository** check box to deactivate the automatic detection and update of the repository.

- Select the **Check the property fields when generating code** check box to activate the audit of the property fields of the component. When one property filed is not correctly filled in, the component is surrounded by red on the design workspace.

Note:
You can optimize performance if you disable property fields verification of components, for example if you clear the **Check the property fields when generating code** check box.

- Select the **Generate code when opening the job** check box to generate code when you open a Job.

- Select the **Check only the last version when updating jobs or joblets** check box to only check the latest version when you update a Job.

- Select the **Propagate add/delete variable changes in repository contexts** to propagate variable changes in the Repository Contexts.

- Select the **Activate the timeout for database connection** check box to establish database connection time out. Then set this time out in the **Connection timeout (seconds)** field.

- Select the **Add all user routines to job dependencies, when create new job** check box to add all user routines to Job dependencies upon the creation of new Jobs.
• In the **Code Format timeout (seconds)** field, specify the number of seconds in which you want your Talend Studio to stop formatting the source code upon code generation, for example when you switch from the **Designer** view to the **Code** view or when you build a Job. The value must be an integer greater than 0. Setting a small timeout value helps prevent performance issues at the price of lower readability of the source code, especially for a large, complex Job.

Debug and Job execution preferences (Talend > Run/Debug)

About this task

You can set your preferences for debug and job executions in Talend Studio. To do so:

Procedure

1. From the menu bar, click **Window > Preferences** to display the **Preferences** dialog box.
2. Expand the **Talend** node and click **Run/Debug** to display the relevant view.

![Run/Debug](image)

Results

• In the **Talend client configuration** area, you can define the execution options to be used by default:

<table>
<thead>
<tr>
<th>Stats port range</th>
<th>Specify a range for the ports used for generating statistics, in particular, if the ports defined by default are used by other applications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace port range</td>
<td>Specify a range for the ports used for generating traces, in particular, if the ports defined by default are used by other applications.</td>
</tr>
<tr>
<td>Save before run</td>
<td>Select this check box to save your Job automatically before its execution.</td>
</tr>
</tbody>
</table>
Clear before run | Select this check box to delete the results of a previous execution before re-executing the Job.
---|---
Exec time | Select this check box to show Job execution duration.
Statistics | Select this check box to show the statistics measurement of data flow during Job execution.
Traces | Select this check box to show data processing during job execution.
Pause time | Enter the time you want to set before each data line in the traces table.

- In the **Job Run VM arguments** list, you can define the parameter of your current JVM according to your needs. The by-default parameters `-Xms256M` and `-Xmx1024M` correspond respectively to the minimal and maximal memory capacities reserved for your Job executions.

If you want to use some JVM parameters for only a specific Job execution, for example if you want to display the execution result for this specific Job in Japanese, you need open this Job’s **Run** view and then in the **Run** view, configure the advanced execution settings to define the corresponding parameters.

For further information about the advanced execution settings of a specific Job, see Setting advanced execution settings on page 124.

For more information about possible parameters, check the site http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html.

Displaying special characters for schema columns (Talend > Specific settings)

About this task

You may need to retrieve a table schema that contains columns written with special characters like Chinese, Japanese, Korean. In this case, you need to enable Talend Studio to read the special characters. To do so:

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. On the tree view of the opened dialog box, expand the **Talend** node.
3. Click the **Specific settings** node to display the corresponding view on the right of the dialog box.
4. Select the **Allow specific characters (UTF8,...) for columns of schemas** check box.

 ![Specific Settings](image)

Schema preferences (Talend > Specific Settings)

About this task

You can define the default data length and type of the schema fields of your components.
Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend** node, and click **Specific Settings > Default Type and Length** to display the data length and type of your schema.

3. Set the parameters according to your needs:
 - In the **Default Settings for Fields with Null Values** area, fill in the data type and the field length to apply to the null fields.
 - In the **Default Settings for All Fields** area, fill in the data type and the field length to apply to all fields of the schema.
 - In the **Default Length for Data Type** area, fill in the field length for each type of data.
SQL Builder preferences (Talend > Specific Settings)

About this task

You can set your preferences for the SQL Builder. To do so:

Procedure

1. From the menu bar, click **Window > Preferences** to open the **Preferences** dialog box.
2. Expand the **Talend** and **Specific Settings** nodes in succession and then click **Sql Builder** to display the relevant view.

3. Customize the SQL Builder preferences according to your needs:
 - Select the **add quotes, when you generated sql statement** check box to precede and follow column and table names with inverted commas in your SQL queries.
 - In the **AS400 SQL generation** area, select the **Standard SQL Statement** or **System SQL Statement** check boxes to use standard or system SQL statements respectively when you use an AS/400 database.
 - Clear the **Enable check queries in the database components (disable to avoid warnings for specific queries)** check box to deactivate the verification of queries in all database components.

SSL settings preferences (Talend> SSL)

About this task

You can set SSL preferences to configure your Talend Studio for secure communications with remote servers.

Procedure

1. From the menu bar, click **Window > Preferences** to display the **Preferences** dialog box.
2. Expand the **Talend** node and then click **SSL** to display the relevant view.
3. Define the Keystore Configuration for the local certificate to be sent to the remote host:
 a) Click Browse next to the Path field and browse to the keystore file that stores your local credentials.
 b) In the Password field, enter the keystore password.
 c) From the Keystore Type list, select the type of keystore to use.
4. Define the Truststore Configuration for verification of the remote host's certificate:
 a) Click Browse next to the Path field and browse to the truststore file.
 b) In the Password field, enter the truststore password.
 c) From the Keystore Type list, select the type of keystore to use.
5. Click Apply to apply your changes; click OK to validate the settings and close the Preferences dialog box.
6. Restart your Talend Studio for the configurations to take effect.

Usage Data Collector preferences (Talend > Usage Data Collector)

About this task

By allowing Talend Studio to collect your Studio usage statistics, you help users better understand Talend products and help Talend better learn how users are using the products, thus enabling Talend to improve product quality and performance to serve users better.
By default, Talend Studio automatically collects your Studio usage data and sends this data on a regular basis to servers hosted by Talend. You can view the usage data collection and upload information and customize the Usage Data Collector preferences according to your needs.

Note:
Be assured that only the Studio usage statistics data will be collected and none of your private information will be collected and transmitted to Talend.

Procedure

1. From the menu bar, click **Window > Preferences** to display the **Preferences** dialog box.
2. Expand the Talend node and click **Usage Data Collector** to display the **Usage Data Collector** view.

![Preferences](image)

3. Read the message about the Usage Data Collector, and, if you do not want the Usage Data Collector to collect and upload your Studio usage information, clear the **Enable capture** check box.
4. To have a preview of the usage data captured by the Usage Data Collector, expand the **Usage Data Collector** node and click **Preview**.
5. To customize the usage data upload interval and view the date of the last upload, click **Uploading** under the **Usage Data Collector** node.

- By default, if enabled, the Usage Data Collector collects the product usage data and sends it to **Talend** servers every 10 days. To change the data upload interval, enter a new integer value (in days) in the **Upload Period** field.
- The read-only **Last Upload** field displays the date and time the usage data was last sent to **Talend** servers.

Using SQL templates

What is ELT

Extract, Load and Transform (ELT) is a data manipulation process in database usage, especially in data warehousing. Different from the traditional ETL (Extract, Transform, Load) mode, in ELT, data is extracted, loaded into the database and then is transformed where it sits in the database, prior to use.
This data is migrated in bulk according to the data set and the transformation process occurs after the
data has been loaded into the targeted DBMS in its raw format. This way, less stress is placed on the
network and larger throughput is gained.

However, the ELT mode is certainly not optimal for all situations, for example,
• As SQL is less powerful than Java, the scope of available data transformations is limited.
• ELT requires users that have high proficiency in SQL tuning and DBMS tuning.
• Using ELT with Talend Studio, you cannot pass or reject one single row of data as you can do in
ETL. For more information about row rejection, see Row connection on page 60.

Based on the advantages and disadvantages of ELT, the SQL templates are designed as the ELT
facilitation requires.

Introducing Talend SQL templates

SQL is a standardized query language used to access and manage information in databases. Its scope
includes data query and update, schema creation and modification, and data access control. Talend
Studio provides a range of SQL templates to simplify the most common tasks. It also comprises a
SQL editor which allows you to customize or design your own SQL templates to meet less common
requirements.

These SQL templates are used with the components from the Talend ELT component family includ-
ing tSQLTemplate, tSQLTemplateFilterColumns, tSQLTemplateCommit, tSQLTemplateFilterRows,
tSQLTemplateRollback, tSQLTemplateAggregate and tSQLTemplateMerge. These components
execute the selected SQL statements. Using the UNION, EXCEPT and INTERSECT operators, you can
modify data directly on the DBMS without using the system memory.

Moreover, with the help of these SQL templates, you can optimize the efficiency of your database
management system by storing and retrieving your data according to the structural requirements.

Talend Studio provides the following types of SQL templates under the SQL templates node in the
Repository tree view:
• System SQL templates: They are classified according to the type of database for which they are
tailored.
• User-defined SQL templates: these are templates which you have created or adapted from
existing templates.

More detailed information about the SQL templates is presented in the below sections.

Note:
As most of the SQL templates are tailored for specific databases, if you change database in your
system, it is inevitable to switch to or develop new templates for the new database.

Managing Talend SQL templates

Talend Studio enables you via the SQL Templates folder in the Repository tree view to use system or
user-defined SQL templates in the Jobs you create in the Studio using the ELT components.

The below sections show you how to manage these two types of SQL templates.

Types of system SQL templates

This section gives detail information related to the different types of the pre-defined SQL templates.
Even though the statements of each group of templates vary from database to database, according to the operations they are intended to accomplish, they are also grouped on the basis of their types in each folder.

The below table provides these types and their related information.

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Associated components</th>
<th>Required component parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>Realizes aggregation (sum, average, count, etc.) over a set of data.</td>
<td>tSQLTemplateAggregate</td>
<td>Database name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source table name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Target table name</td>
</tr>
<tr>
<td>Commit</td>
<td>Sends a Commit instruction to RDBMS.</td>
<td>tSQLTemplate tSQLTemplateAggregate tSQLTemplateCommit tSQLTemplateFilterColumns tSQLTemplateFilterRows tSQLTemplateMerge tSQLTemplateRollback</td>
<td>Null</td>
</tr>
<tr>
<td>Rollback</td>
<td>Sends a Rollback instruction to RDBMS.</td>
<td>tSQLTemplate tSQLTemplateAggregate tSQLTemplateCommit tSQLTemplateFilterColumns tSQLTemplateFilterRows tSQLTemplateMerge tSQLTemplateRollback</td>
<td>Null</td>
</tr>
<tr>
<td>DropSourceTable</td>
<td>Removes a source table.</td>
<td>tSQLTemplate tSQLTemplateAggregate tSQLTemplateFilterColumns tSQLTemplateFilterRows</td>
<td>Table name (when use tSQLTemplate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source table name</td>
</tr>
<tr>
<td>DropTargetTable</td>
<td>Removes a target table.</td>
<td>tSQLTemplateAggregate tSQLTemplateFilterColumns tSQLTemplateFilterRows</td>
<td>Target table name</td>
</tr>
<tr>
<td>FilterColumns</td>
<td>Selects and extracts a set of data from given columns in RDBMS.</td>
<td>tSQLTemplateAggregate tSQLTemplateFilterColumns tSQLTemplateFilterRows</td>
<td>Target table name (and schema)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source table name (and schema)</td>
</tr>
<tr>
<td>FilterRow</td>
<td>Selects and extracts a set of data from given rows in RDBMS.</td>
<td>tSQLTemplateAggregate tSQLTemplateFilterColumns tSQLTemplateFilterRows</td>
<td>Target table name (and schema)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source table name (and schema)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conditions</td>
</tr>
<tr>
<td>MergeInsert</td>
<td>Inserts records from the source table to the target table.</td>
<td>tSQLTemplateMerge tSQLTemplateCommit</td>
<td>Target table name (and schema)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source table name (and schema)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conditions</td>
</tr>
</tbody>
</table>
Merge Update

Updates the target table with records from the source table.

tSQLTemplateMerge

Target table name (and schema)

tSQLTemplateCommit

Source table name (and schema)

Conditions

Accessing a system SQL template

To access a system SQL template, expand the **SQL Templates** node in the **Repository** tree view.

Each folder contains a **system** sub-folder containing pre-defined SQL statements, as well as a **UserDefined** folder in which you can store SQL statements that you have created or customized.

Each system folder contains several types of SQL templates, each designed to accomplish a dedicated task.

Apart from the **Generic** folder, the SQL templates are grouped into different folders according to the type of database for which they are to be used. The templates in the **Generic** folder are standard, for use in any database. You can use these as a basis from which you can develop more specific SQL templates than those defined in Talend Studio.
Note:
The system folders and their content are read only.

From the Repository tree view, proceed as follows to open an SQL template:

Procedure
1. In the Repository tree view, expand SQL Templates and browse to the template you want to open.
2. Double-click the class that you want to open, for example, Aggregate in the Generic folder.
 The Aggregate template view displays in the workspace.

Results
You can read the predefined Aggregate statements in the template view. The parameters, such as TABLE_NAME_TARGET, operation, are to be defined when you design related Jobs. Then the parameters can be easily set in the associated components, as mentioned in the previous section.

Everytime you click or open an SQL template, its corresponding property view displays at the bottom of the studio. Click the Aggregate template, for example, to view its properties as presented below:

For further information regarding the different types of SQL templates, see Types of system SQL templates on page 503.
Creating user-defined SQL templates

As the transformation you need to accomplish in ELT may exceed the scope of what the given SQL templates can achieve, Talend Studio allows you to develop your own SQL templates according to some writing rules. These SQL templates are stored in the UserDefined folders grouped according to the database type in which they will be used.

For more information on the SQL template writing rules, see SQL statements on page 512.

To create a user-defined SQL template:

Procedure

1. In the Repository tree view, expand SQL Templates and then the category you want to create the SQL template in.

2. Right-click UserDefined and select Create SQLTemplate to open the New SQLTemplate wizard.
3. Enter the information required to create the template and click **Finish** to close the wizard.

The name of the newly created template appears under **UserDefined** in the **Repository** tree view. Also, an SQL template editor opens on the design workspace, where you can enter the code for the newly created template.

For further information about how to use a user-defined SQL template in a Job, see [Iterating on DB tables and deleting their content using a user-defined SQL template](https://help.talend.com) on Talend Help Center.

A use case of system SQL templates

As there are many common, standardized SQL statements, Talend Studio allows you to benefit from various system SQL templates.

This section presents you with a use case that takes you through the steps of using MySQL system templates in a Job that:

- opens a connection to a Mysql database.
- collects data grouped by specific value(s) from a database table and writes aggregated data in a target database table.
- deletes the source table where the aggregated data comes from.
- reads the target database table and lists the Job execution result.

To connect to the database and aggregate the database table columns:
Configuring a connection to a MySQL database

Procedure

1. Drop the following components from the Palette onto the design workspace: `tMysqlConnection`, `tSQLTemplateAggregate`, `tSQLTemplateCommit`, `tMysqlInput`, and `tLogRow`.
2. Link `tMysqlConnection` to `tSQLTemplateAggregate` using a Trigger > On Subjob Ok connection.
3. Do the same to link `tSQLTemplateAggregate` to `tSQLTemplateCommit` and link `tSQLTemplateCommit` to `tMysqlInput`.
4. Link `tMysqlInput` to `tLogRow` using a Row > Main connection.
5. Double-click `tMysqlConnection` to open its Basic settings view.
6. In the Basic settings view, set the database connection details manually.
7. Double-click tSQLTemplateCommit to open its Basic settings view.

8. On the Database Type list, select the relevant database type, and from the Component List, select the relevant database connection component if more than one connection is used.

Grouping data, writing aggregated data and dropping the source table

Procedure

1. Double-click tSQLTemplateAggregate to open its Basic settings view.

2. On the Database Type list, select the relevant database type, and from the Component List, select the relevant database connection component if more than one connection is used.

3. Enter the names for the database, source table, and target table in the corresponding fields and define the data structure in the source and target tables.

 The source table schema consists of three columns: First_Name, Last_Name and Country. The target table schema consists of two columns: country and total. In this example, we want to group citizens by their nationalities and count citizen number in each country. To do that, we define the Operations and Group by parameters accordingly.

4. In the Operations table, click the [+] button to add one or more lines, and then click the Output column cell and select the output column that will hold the counted data from the drop-down list.

5. Click the Function cell and select the operation to be carried on from the drop-down list.

6. In the Group by table, click the [+] button to add one or more lines, and then click the Output column cell and select the output column that will hold the aggregated data from the drop-down list.

7. Click the SQL Template tab to open the corresponding view.
8. Click the [+] button twice under the SQL Template List table to add two SQL templates.

9. Click on the first SQL template row and select the MySQLAggregate template from the drop-down list. This template generates the code to aggregate data according to the configuration in the Basic settings view.

10. Do the same to select the MySQLDropSourceTable template for the second SQL template row. This template generates the code to delete the source table where the data to be aggregated comes from.

Note:
To add new SQL templates to an ELT component for execution, you can simply drop the templates of your choice either onto the component in the design workspace, or onto the component’s SQL Template List table.

Note:
The templates set up in the SQL Template List table have priority over the parameters set in the Basic settings view and are executed in a top-down order. So in this use case, if you select MySQLDropSourceTable for the first template row and MySQLAggregate for the second template row, the source table will be deleted prior to aggregation, meaning that nothing will be aggregated.

Reading the target database and listing the Job execution result

Procedure

1. Double-click tMysqlInput to open its Basic settings view.
2. Select the **Use an existing connection** check box to use the database connection that you have defined on the **tMysqlConnection** component.

3. To define the schema, select **Repository** and then click the [...] button to choose the database table whose schema is used. In this example, the target table holding the aggregated data is selected.

4. In the **Table Name** field, type in the name of the table you want to query. In this example, the table is the one holding the aggregated data.

5. In the **Query** area, enter the query statement to select the columns to be displayed.

6. Save your Job and press **F6** to execute it.

The source table is deleted.

A two-column table **citizencount** is created in the database. It groups citizens according to their nationalities and gives their total count in each country.

SQL template writing rules

SQL statements

An SQL statement can be any valid SQL statement that the related JDBC is able to execute. The SQL template code is a group of SQL statements. The basic rules to write an SQL statement in the SQL template editor are:

- An SQL statement must end with `;`.
- An SQL statement can span lines. In this case, no line should be ended with `;` except the last one.
Comment lines

A comment line starts with # or --. Any line that starts with # or -- will be ignored in code generating.

Note:
There is no exception to the lines in the middle part of a SQL statement or within the <\%... \%> syntax.

The <\%...\%> syntax

This syntax can span lines. The following list points out what you can do with this syntax and what you should pay attention to.

• You can define new variables, use Java logical code like if, for and while, and also get parameter values.
 For example, if you want to get the FILE_Name parameter, use the code as follows:

```java
<% String filename = __FILE_NAME__; %>
```

• This syntax cannot be used within an SQL statement. In other words, it should be used between two separated SQL statements.
 For example, the syntax in the following code is valid.

```sql
#sql sentence
DROP TABLE temp_0;
<% #loop
for(int i=1; i<10; i++){
%>
#sql sentence
DROP TABLE temp_<%=i %>;  
<% }
%>
#sql sentence
DROP TABLE temp_10;
```

In this example, the syntax is used between two separated SQL templates: DROP TABLE temp_0; and DROP TABLE temp_<%=i %>.

The SQL statements are intended to remove several tables beginning from temp_0. The code between <\% and \%> generate a sequence of number in loop to identify tables to be removed and close the loop after the number generation.

• Within this syntax, the <\%=...\%> or <\.../> syntax should not be used.
 <\%=...\%> and <\.../> are also syntax intended for the SQL templates. The below sections describe related information.
The `<%=...%>` syntax

This syntax cannot span lines and is used for SQL statement. The following list points out what you can do with this syntax and what you should pay attention to.

- This syntax can be used to generate any variable value, and also the value of any existing parameter.
- No space char is allowed after `<%=`.
- Inside this syntax, the `<% ... %>` or `<%/ ... />` syntax should not be used.

The statement written in the below example is a valid one.

```sql
#sql sentence
DROP TABLE temp_<%=__TABLE_NAME__ %>;  
```

The code is used to remove the table defined through an associated component.

For more information about what components are associated with the SQL templates, see What is a Job design? on page 25.

For more information on the `<% ... %>` syntax, see The `<%...%>` syntax on page 513.

For more information on the `<%/ ... />` syntax, see the following section.

The `"<%/.../>"` syntax

This syntax cannot span lines. The following list points out what you can do with this syntax and what you should pay attention to.

- It can be used to generate the value of any existing parameter. The generated value should not be enclosed by quotation marks.
- No space char is allowed after `<%` or before `%/`.
- Inside this syntax, the `<% ... %>` or `<%=...%>` syntax should not be used.

The statement written in the below example is a valid one.

```sql
#sql sentence
DROP TABLE temp_<%/TABLE_NAME%/>;  
```

The statement identifies the `TABLE_NAME` parameter and then removes the corresponding table.

For more information on the `<% ... %>` syntax, see The `<%...%>` syntax on page 513.

For more information on the `<%=...%>` syntax, see The `<%=...%>` syntax on page 514.
The following sections present more specific code used to access more complicated parameters.

Note:
Parameters that the SQL templates can access with this syntax are simple. They are often used for connection purpose and can be easily defined in components, such as `TABLE_NAME`, `DB_VERSION`, `SCHEMA_TYPE`, etc.

Code to access the component schema elements

Component schema elements are presented on a schema column name list (delimited by a dot `.`). These elements are created and defined in components by users.

The below code composes an example to access some elements included in a component schema. In the following example, the `ELT_METADATA_SHEMA` variable name is used to get the component schema.

```java
<% String query = "select ";
    SCHEMA(__ELT_METADATA_SHEMA__); 
    for (int i=0; i < __ELT_METADATA_SHEMA__.length ; i++) {
        query += (__ELT_METADATA_SHEMA__[i].name + ",");
    }
    query += " from " + __TABLE_NAME__;
<%}%
```

In this example, and according to what you want to do, the `__ELT_METADATA_SHEMA__[i].name` code can be replaced by `__ELT_METADATA_SHEMA__[i].dbType`, `__ELT_METADATA_SHEMA__[i].isKey`, `__ELT_METADATA_SHEMA__[i].length` or `__ELT_METADATA_SHEMA__[i].nullable` to access the other fields of the schema column.

The extract statement is `SCHEMA(__ELT_METADATA_SHEMA__);`. In this statement, `ELT_METADATA_SHEMA` is the variable name representing the schema parameter to be extracted. The variable name used in the code is just an example. You can change it to another variable name to represent the schema parameter you already defined.

Warning:
Make sure that the name you give to the schema parameter does not conflict with any name of other parameters.

For more information on component schema, see Basic Settings tab on page 39.

Code to access the component matrix properties

The component matrix properties are created and changed by users according to various data transformation purposes. These properties are defined by tabular parameters, for example, the operation parameters or groupby parameters that users can define through the `tSQLTemplateAggregate` component.

To access these tabular parameters that are naturally more flexible and complicated, two approaches are available:

- The `<.../>` approach:
is one of the syntax used by the SQL templates. This approach often needs hard coding for every parameter to be extracted.

For example, a new parameter is created by user and is given the name NEW_PROPERTY. If you want to access it by using </NEW_PROPERTY />, the below code is needed.

```java
else if (paramName.equals("NEW_PROPERTY")) {
    List<Map<String, String>> newPropertyTableValue = (List<Map<String, String>>)
    ElementParameterParser.getObjectValue(node, "__NEW_PROPERTY__");
    for (int ii = 0; ii <newPropertyTableValue.size(); ii++) {
        Map<String, String> newPropertyMap = newPropertyTableValue.get(ii);
        realValue += ...;//append generated codes
        ......
    }
}
```

- The EXTRACT(__GROUPBY__); approach:

The below code shows the second way to access the tabular parameter (GROUPBY).

```java
<% String query = "insert into __TABLE_NAME__ (id, name, date_birth) select sum(id), name, date_birth from cust_teradata group by";
    EXTRACT(__GROUPBY__);
    for (int i=0; i <__GROUPBY_LENGTH__; i++) {
        query += (__GROUPBY_INPUT_COLUMN__[i] + " ");
    }
%>
<%=query %>
```

When coding the statements, respect the rules as follows:

- The extract statement must use EXTRACT(__GROUPBY__);. Upcase should be used and no space char is allowed. This statement should be used between <% and %>.
- Use __GROUPBY_LENGTH__, in which the parameter name is followed by __LENGTH, to get the line number of the tabular GROUPBY parameters you define in the Groupby area on a Component view. It can be used between <% and %> or <%= and %>.
- Use code like __GROUPBY_INPUT_COLUMN__[i] to extract the parameter values. This can be used between <% and %> or between <%= and %>.
- In order to access the parameter correctly, do not use the identical name prefix for several parameters. For example in the component, avoid to define two parameters with the names PARAMETER_NAME and PARAMETER_NAME_2, as the same prefix in the names causes erroneous code generation.